File: mem_dependency_checker.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (413 lines) | stat: -rw-r--r-- 13,121 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#pragma once
#include <c10/core/ScalarType.h>
#include <torch/csrc/Export.h>
#include <vector>

#include <torch/csrc/jit/tensorexpr/bounds_overlap.h>
#include <torch/csrc/jit/tensorexpr/ir_mutator.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_visitor.h>
#include <torch/csrc/jit/tensorexpr/stmt.h>

namespace torch {
namespace jit {
namespace tensorexpr {
namespace analysis {

enum class AccessType {
  Input,
  Output,
  Load,
  Store,
  Call,
  AtomicAdd,
  Alloc,
  Free
};
const char* AccessToString(AccessType a);

class AccessInfo;
using DependencySet = std::unordered_set<std::shared_ptr<AccessInfo>>;

/* AccessInfo
 *
 * Represents a single bounded memory access to a buffer, for instance a Load or
 * a Store. Holds infomation relating to the specific access and links to
 * connected accesses in the dependency graph.
 */
class TORCH_API AccessInfo {
 public:
  AccessInfo(
      size_t id,
      AccessType type,
      StmtPtr stmt,
      VarPtr var,
      IndexBounds bounds)
      : id_(id),
        type_(type),
        stmt_(stmt),
        expr_(nullptr),
        var_(var),
        bounds_(std::move(bounds)) {}

  AccessInfo(
      size_t id,
      AccessType type,
      ExprPtr expr,
      StmtPtr stmt,
      VarPtr var,
      IndexBounds bounds)
      : id_(id),
        type_(type),
        stmt_(stmt),
        expr_(expr),
        var_(var),
        bounds_(std::move(bounds)) {}

  // Id is a unique int representing the order this access occured in the graph.
  size_t id() const {
    return id_;
  }

  // The type of the access (Load, Store, etc).
  AccessType type() const {
    return type_;
  }

  // The enclosing Stmt this access represents. E.g. if this is a Store then
  // Stmt is the Store itself, while if the access is caused by an Expr, this is
  // the most immediate parent Stmt.
  StmtPtr stmt() const {
    return stmt_;
  }

  // If the access is represented by an Expr (such as Load or Call) then this is
  // it, otherwise it's nullptr.
  ExprPtr expr() const {
    return expr_;
  }

  // The Var representing the underlying Buffer.
  VarPtr var() const {
    return var_;
  }

  // A vector of Bounds representing the start and end expression for each
  // dimension.
  IndexBounds& bounds() {
    return bounds_;
  }

  // Each access that this depends upon,
  // eg. if this is a Load, then it contains every Store that immediately
  // contributes to a load of the bounds.
  // or: if this is a Store, it contains all reads on the RHS of the Store.
  const std::map<size_t, std::shared_ptr<AccessInfo>>& dependencies() const {
    return dependencies_;
  }

  // Each access that depends on this one.
  // ie. this access is present in the dependencies map of all accesses that are
  // dependent.
  std::map<size_t, std::shared_ptr<AccessInfo>> dependents() const {
    std::map<size_t, std::shared_ptr<AccessInfo>> res;
    for (const auto& kv : dependents_) {
      res.emplace(kv.first, kv.second.lock());
    }
    return res;
  }

  // Returns the symbolic expression of the indices of this access.
  std::vector<ExprPtr> getIndices() const;

  // Establishes a dependency or dependent relationship with another access.
  void addDependency(const std::shared_ptr<AccessInfo>& write);
  void addDependent(const std::shared_ptr<AccessInfo>& read);

  // helper for checking dependencies.
  bool hasDependency(const std::shared_ptr<AccessInfo>& info) const;

  // Returns the set of all nodes that are direct (immediate) dependencies of
  // this access.
  DependencySet getDirectDependencies();
  // likewise, returns all nodes that directly depend on this one.
  DependencySet getDirectDependents();

  // Returns the full list of all nodes in the graph that this access depends
  // on, and all nodes they depend on, and so forth, back to the inputs.
  DependencySet getIndirectDependencies();
  // likewise, returns the full list of all nodes that depend on this node, and
  // all nodes that depend on those nodes and so on down to the outputs.
  DependencySet getIndirectDependents();

  // Does this access represent a read of memory (Load, ReduceOp, Call, etc).
  bool isRead() const;
  // Does this access represent a write of memory (Store, etc).
  bool isWrite() const;

  // Helpers for dumping accesses in various formats.
  void print() const;
  void dumpDOT(std::ostream& os) const;
  const char* AccessTypeColour() const;

 private:
  size_t id_;
  AccessType type_;
  StmtPtr stmt_;
  ExprPtr expr_;
  VarPtr var_;
  IndexBounds bounds_;

  // Yes these should be sorted.
  std::map<size_t, std::shared_ptr<AccessInfo>> dependencies_;
  std::map<size_t, std::weak_ptr<AccessInfo>> dependents_;
};

using VarBoundMap = std::unordered_map<VarPtr, Bound>;

/* MemDepedencyChecker analyses a IR fragment and builds a dependency graph of
 * accesses contained within.
 *
 * It's possible to retrieve the entire graph in node-object form, or can be
 * used as an oracle for answering dependency questions. e.g:
 *
 *  analyzer.hasIndirectDependency(BufA, BufB); or,
 *  analyzer.hasDirectDependency(LoadA, StoreB);
 */
class TORCH_API MemDependencyChecker : public IRVisitor {
  struct Scope;

 public:
  MemDependencyChecker();
  MemDependencyChecker(
      const std::unordered_set<BufPtr>& inputs,
      const std::unordered_set<BufPtr>& outputs);
  MemDependencyChecker(
      const std::vector<BufHandle>& inputs,
      const std::vector<BufHandle>& outputs);

  ~MemDependencyChecker() override = default;

  // Whether or not to allow loop execution order to influence dependency
  // calculation. If the loop may later be parallelized you don't want this.
  bool allowLoopExecutionOrderAnalysis(bool allow = true);

  // Dependency Checking API.
  // The goal is to have enough overloads here so you don't really have to think
  // about it.

  // Returns true if any read in A has a direct dependence on a write in B.
  bool dependsDirectly(StmtPtr A, StmtPtr B);
  bool dependsDirectly(ExprPtr A, StmtPtr B);

  // Returns true of the output depends directly on a write contained in B.
  bool dependsDirectly(BufPtr output, StmtPtr B);

  // Returns true if a read in A depends directly on the provided input.
  bool dependsDirectly(StmtPtr A, BufPtr input);
  bool dependsDirectly(ExprPtr A, BufPtr input);

  // Outputs/inputs cannot depend directly.

  // Returns true if the access A has B as an immediate dependency.
  bool dependsDirectly(
      const std::shared_ptr<AccessInfo>& A,
      const std::shared_ptr<AccessInfo>& B);

  // Returns true if any read in A has an ancestor write contained in B.
  bool dependsIndirectly(StmtPtr A, StmtPtr B);
  bool dependsIndirectly(ExprPtr A, StmtPtr B);

  // Returns true of the output depends indirectly on a write contained in B.
  bool dependsIndirectly(BufPtr output, StmtPtr B);

  // Returns true if a read in A depends indirectly on the provided input.
  bool dependsIndirectly(StmtPtr A, BufPtr input);
  bool dependsIndirectly(ExprPtr A, BufPtr input);

  // returns true if the output uses any load of the input.
  bool dependsIndirectly(BufPtr output, BufPtr input);

  // Returns true if the access A has a dependency chain to access B.
  bool dependsIndirectly(
      const std::shared_ptr<AccessInfo>& A,
      const std::shared_ptr<AccessInfo>& B);

  // Returns the AccessInfo
  std::shared_ptr<AccessInfo> accessFor(StmtPtr A) const;
  std::shared_ptr<AccessInfo> accessFor(ExprPtr A) const;

  // Returns all AccessInfos.
  std::unordered_set<std::shared_ptr<AccessInfo>> accessesWithin(
      StmtPtr A) const;
  // TODO: this will return only the AccessInfo for A. It's included for
  // completeness but be aware it wont return accesses used in the computation
  // of A.
  std::unordered_set<std::shared_ptr<AccessInfo>> accessesWithin(
      ExprPtr A) const;

  // Accesses relating to input and output buffers.
  std::shared_ptr<AccessInfo> input(BufPtr B) const;
  std::shared_ptr<AccessInfo> output(BufPtr B) const;

  // Returns the full history of reads and writes.
  const std::vector<std::shared_ptr<AccessInfo>>& getHistory() const;

  // Dumps the dependency graph in DOT format.
  void dumpDAG(const std::string& filename) const;

 private:
  // Node visitors.
  void visit(StorePtr v) override;
  void visit(LoadPtr v) override;
  void visit(ForPtr v) override;
  void visit(CondPtr v) override;
  void visit(IfThenElsePtr v) override;
  void visit(CompareSelectPtr v) override;
  void visit(BlockPtr v) override;
  void visit(LetPtr v) override;
  void visit(AtomicAddPtr v) override;
  void visit(AllocatePtr v) override;
  void visit(FreePtr v) override;

  using BoundRelationship = std::pair<IndexBounds, std::shared_ptr<AccessInfo>>;

  // An internal struct holding the accesses found within a scope Block.
  struct Scope {
    Scope(BlockPtr b, std::shared_ptr<Scope> p)
        : block(b), parent(std::move(p)) {}

    BlockPtr block;
    std::shared_ptr<Scope> parent;

    std::unordered_map<VarPtr, Bound> shadowedVarBounds;
    std::unordered_set<VarPtr> localVars;

    std::vector<std::shared_ptr<AccessInfo>> accesses_;

    std::unordered_map<VarPtr, std::list<BoundRelationship>> openWrites_;
  };
  std::shared_ptr<Scope> currentScope_;

  bool allowExecutionOrderAnalysis_{false};

  std::unordered_multimap<StmtPtr, std::shared_ptr<AccessInfo>> stmtToAccess_;
  std::unordered_multimap<ExprPtr, std::shared_ptr<AccessInfo>> exprToAccess_;
  std::unordered_map<StmtPtr, std::vector<std::shared_ptr<AccessInfo>>>
      scopeToAccesses_;

  VarBoundMap knownVarBounds_;

  // Finds all accesses that are reads within the scope of v.
  template <typename StmtOrExprPtr>
  DependencySet getAllReadsWithin(StmtOrExprPtr v) {
    DependencySet reads;
    auto insertAllReads = [&](const auto& nodes) {
      for (auto l : nodes) {
        auto bound = exprToAccess_.equal_range(l);
        for (auto it = bound.first; it != bound.second; ++it) {
          if (it->second->isRead()) {
            reads.insert(it->second);
          }
        }
      }
    };

    // Look for and insert accesses belonging to all nodes that act like
    // reads.
    insertAllReads(NodeFinder<Load>::find(v));
    insertAllReads(NodeFinder<ReduceOp>::find(v));

    return reads;
  }

  // Finds all accesses that are writes within the scope of v.
  // Writes cannot occur in Exprs, so this is a little simpler.
  DependencySet getAllWritesWithin(StmtPtr v) {
    DependencySet writes;

    // writes just Store currently.
    auto stores = NodeFinder<Store>::find(v);
    for (auto s : stores) {
      auto bound = stmtToAccess_.equal_range(s);
      for (auto it = bound.first; it != bound.second; ++it) {
        if (it->second->isWrite()) {
          writes.insert(it->second);
        }
      }
    }
    return writes;
  }

  // Templated helpers to work on either Exprs or Stmts.
  template <typename StmtOrExprPtr>
  bool dependsDirectlyHelper(StmtOrExprPtr A, StmtPtr B) {
    auto aReads = getAllReadsWithin(A);
    auto bWrites = getAllWritesWithin(B);

    for (auto& read : aReads) {
      for (auto& depPair : read->dependencies()) {
        if (bWrites.count(depPair.second) != 0) {
          return true;
        }
      }
    }

    return false;
  }

  template <typename StmtOrExprPtr>
  bool dependsIndirectlyHelper(StmtOrExprPtr A, StmtPtr B) {
    auto aReads = getAllReadsWithin(A);
    auto bWrites = getAllWritesWithin(B);

    auto aDeps = getAllWriteDependencies(aReads);

    for (auto& dependency : aDeps) {
      if (bWrites.count(dependency) != 0) {
        return true;
      }
    }

    return false;
  }

  DependencySet getAllWriteDependencies(const DependencySet& products);

  // Maps for inputs and outputs, since they aren't present directly in the IR.
  std::unordered_map<BufPtr, std::shared_ptr<AccessInfo>> inputs_;
  std::unordered_map<BufPtr, std::shared_ptr<AccessInfo>> outputs_;
  std::unordered_map<VarPtr, std::shared_ptr<AccessInfo>> intermediates_;

  // Inserts accesses for Buf's: specifically for inputs and outputs.
  void insertBuffers(
      std::unordered_map<BufPtr, std::shared_ptr<AccessInfo>>& bufs,
      AccessType type);

  // Update the write history with a new write, adding dependencies and closing
  // any overlapped writes (if possible).
  void updateWriteHistory(
      std::list<BoundRelationship>& writeHistory,
      const std::shared_ptr<AccessInfo>& info,
      size_t latestAccessToClose,
      bool closeOverlapped = true,
      bool insert = true);

  // Merge a child scope into a parent scope, adding dependencies for open
  // writes in the parent to accesses in the child.
  void mergeScope(
      const std::shared_ptr<Scope>& child,
      const std::shared_ptr<Scope>& parent,
      bool closeOverlapped = true);

  // Binds symbolic vars in indices with the low and high bound for those vars.
  std::vector<Bound> getIndicesBounds(const std::vector<ExprPtr>& indices);

  size_t nextAccess_{0};
  StmtPtr lastStmt_{nullptr};
};

} // namespace analysis
} // namespace tensorexpr
} // namespace jit
} // namespace torch