1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
#pragma once
#include <torch/csrc/jit/tensorexpr/operators/misc.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch {
namespace jit {
namespace tensorexpr {
// An API to compute 2D depthwise convolutions with bias.
TORCH_API Tensor conv2d_depthwise(
BufHandle input,
BufHandle weight,
BufHandle bias,
int stride,
int pad,
int groups);
// An API to compute 2D depthwise convolutions without bias.
TORCH_API Tensor conv2d_depthwise(
BufHandle input,
BufHandle weight,
int stride,
int pad,
int groups);
TORCH_API Tensor conv2d_depthwise(
BufHandle input,
BufHandle weight,
BufHandle bias,
ExprHandle N,
ExprHandle C,
ExprHandle H,
ExprHandle W,
ExprHandle K,
ExprHandle CperG,
ExprHandle R,
ExprHandle S,
ExprHandle stride,
ExprHandle pad,
ExprHandle groups);
TORCH_API Tensor conv2d_depthwise(
BufHandle input,
BufHandle weight,
ExprHandle N,
ExprHandle C,
ExprHandle H,
ExprHandle W,
ExprHandle K,
ExprHandle CperG,
ExprHandle R,
ExprHandle S,
ExprHandle stride,
ExprHandle pad,
ExprHandle groups);
bool conv2dIsSupported(
const TensorInfo& input,
const TensorInfo& weight,
const TensorInfo& bias,
const std::vector<int64_t>& stride,
const std::vector<int64_t>& pad,
const std::vector<int64_t>& dilation,
int64_t groups);
bool mkldnnPrepackedConvIsSupported(
const TensorInfo& input,
const TensorInfo& weight,
const std::vector<int64_t>& stride,
const std::vector<int64_t>& pad,
const std::vector<int64_t>& dilation,
int64_t groups);
Tensor computeConv2d(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeConv1d(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computePrepackedConv2dClampRun(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computePrepackedLinearClampRun(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeMkldnnPrepackedConvRun(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|