File: conv2d.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (105 lines) | stat: -rw-r--r-- 2,943 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#pragma once

#include <torch/csrc/jit/tensorexpr/operators/misc.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>

namespace torch {
namespace jit {
namespace tensorexpr {

// An API to compute 2D depthwise convolutions with bias.
TORCH_API Tensor conv2d_depthwise(
    BufHandle input,
    BufHandle weight,
    BufHandle bias,
    int stride,
    int pad,
    int groups);

// An API to compute 2D depthwise convolutions without bias.
TORCH_API Tensor conv2d_depthwise(
    BufHandle input,
    BufHandle weight,
    int stride,
    int pad,
    int groups);

TORCH_API Tensor conv2d_depthwise(
    BufHandle input,
    BufHandle weight,
    BufHandle bias,
    ExprHandle N,
    ExprHandle C,
    ExprHandle H,
    ExprHandle W,
    ExprHandle K,
    ExprHandle CperG,
    ExprHandle R,
    ExprHandle S,
    ExprHandle stride,
    ExprHandle pad,
    ExprHandle groups);

TORCH_API Tensor conv2d_depthwise(
    BufHandle input,
    BufHandle weight,
    ExprHandle N,
    ExprHandle C,
    ExprHandle H,
    ExprHandle W,
    ExprHandle K,
    ExprHandle CperG,
    ExprHandle R,
    ExprHandle S,
    ExprHandle stride,
    ExprHandle pad,
    ExprHandle groups);

bool conv2dIsSupported(
    const TensorInfo& input,
    const TensorInfo& weight,
    const TensorInfo& bias,
    const std::vector<int64_t>& stride,
    const std::vector<int64_t>& pad,
    const std::vector<int64_t>& dilation,
    int64_t groups);
bool mkldnnPrepackedConvIsSupported(
    const TensorInfo& input,
    const TensorInfo& weight,
    const std::vector<int64_t>& stride,
    const std::vector<int64_t>& pad,
    const std::vector<int64_t>& dilation,
    int64_t groups);
Tensor computeConv2d(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const c10::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeConv1d(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const c10::optional<ScalarType>& outputType,
    at::Device device);
Tensor computePrepackedConv2dClampRun(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const c10::optional<ScalarType>& outputType,
    at::Device device);
Tensor computePrepackedLinearClampRun(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const c10::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeMkldnnPrepackedConvRun(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const c10::optional<ScalarType>& outputType,
    at::Device device);
} // namespace tensorexpr
} // namespace jit
} // namespace torch