1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <torch/csrc/jit/tensorexpr/operators/misc.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch {
namespace jit {
namespace tensorexpr {
int64_t normalizeAndCheckIndex(int64_t idx, int64_t list_size) {
if (idx < 0) {
// Handle negative indexing
idx = list_size + idx;
}
if (idx < 0 || idx >= list_size) {
AT_ERROR("Invalid index ", idx, " for list_size", list_size);
}
return idx;
}
// Convert boolean to integer, if needed.
ExprHandle boolToInteger(const ExprHandle& x) {
return x.dtype().scalar_type() == ScalarType::Bool ? cast<int>(x) : x;
}
ExprHandle promoteToDtype(ExprHandle e, ScalarType dt) {
if (e.dtype().scalar_type() == dt) {
return e;
}
switch (dt) {
// NOLINTNEXTLINE
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
e = cast<Type>(e); \
break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
case ScalarType::QUInt8:
e = cast<c10::quint8>(e);
break;
case ScalarType::QInt8:
e = cast<c10::qint8>(e);
break;
default:
throw unsupported_dtype();
}
return e;
}
static bool checkTypes(const ScalarType highType, const int typeConstraints) {
if (typeConstraints == kAllTypes) {
return true;
}
if (c10::isIntegralType(highType, false)) {
return (typeConstraints & kIntegralTypes) != 0;
} else if (c10::isFloatingType(highType)) {
return (typeConstraints & kFloatingPointTypes) != 0;
} else if (highType == ScalarType::Bool) {
return (typeConstraints & kBoolType) != 0;
}
// assume JIT not supporting complex and qint yet
TORCH_INTERNAL_ASSERT(
(typeConstraints & (kQintTypes | kComplexTypes)) == 0,
buildErrorMessage(
"Qint and Complex types are not supported in the fuser."));
return false;
}
bool isScalar(ExprHandle e) {
auto n = e.node();
return n->isConstant() || to<Var>(n);
}
ExprHandle promoteHalfToFloat(const ExprHandle& e) {
auto scalarType = static_cast<c10::ScalarType>(e.dtype().scalar_type());
auto floatType = static_cast<c10::ScalarType>(tensorexpr::ScalarType::Float);
if (c10::isFloatingType(scalarType) &&
(c10::elementSize(scalarType) < c10::elementSize(floatType))) {
return Cast::make(
Dtype(tensorexpr::ScalarType::Float, e.dtype().lanes()), e);
} else {
return e;
}
}
void promoteInputs(std::vector<ExprHandle>& inputs, const int typeConstraints) {
if (inputs.empty()) {
return;
}
// Find the highest type among the inputs.
ScalarType highType = inputs[0].dtype().scalar_type();
for (const auto& input : inputs) {
auto inputType = input.dtype().scalar_type();
if (isScalar(input)) {
if (isIntegralType(highType, false) && isFloatingType(inputType)) {
highType = c10::get_default_dtype_as_scalartype();
} else if (highType == c10::kBool) {
highType = inputType;
}
} else {
highType = promoteTypes(highType, inputType);
}
}
if (!checkTypes(highType, typeConstraints)) {
throw unsupported_dtype();
}
for (ExprHandle& e : inputs) {
e = promoteToDtype(e, highType);
}
}
ExprHandle promoteIntegerToDefaultType(const ExprHandle& e) {
auto scalarType = static_cast<c10::ScalarType>(e.dtype().scalar_type());
if (!c10::isIntegralType(scalarType, /*includeBool*/ true)) {
return e;
}
auto defaultType = c10::typeMetaToScalarType(c10::get_default_dtype());
// We intend to promote Integers to floating-point types
TORCH_INTERNAL_ASSERT(
!c10::isIntegralType(defaultType, /*includeBool*/ true));
return Cast::make(
Dtype(
static_cast<tensorexpr::ScalarType>(defaultType), e.dtype().lanes()),
e);
}
ExprHandle demoteOutput(
const ExprHandle& e,
const c10::optional<ScalarType> type) {
if (!type.has_value()) {
return e;
}
if (*type == e.dtype().scalar_type()) {
return e;
}
switch (*type) {
// NOLINTNEXTLINE
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
return cast<Type>(e);
AT_FORALL_SCALAR_TYPES_AND2(Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
case ScalarType::Bool:
return cast<bool>(e);
default:
throw unsupported_dtype();
}
return e;
}
c10::optional<TensorInfo> getTensorInfo(BufHandle b) {
std::vector<int64_t> dims;
for (auto dim : b.dims()) {
auto val = intValue(dim.node());
if (!val) {
return c10::nullopt;
}
dims.push_back(*val);
}
return TensorInfo{dims, static_cast<at::ScalarType>(b.dtype().scalar_type())};
}
ExprHandle clamp(
const ExprHandle& cmin,
const ExprHandle& cmax,
const ExprHandle& input) {
auto mm = CompareSelect::make(input, cmin, cmin, input, kLT);
return CompareSelect::make(mm, cmax, cmax, mm, kGT);
}
static bool isOne(ExprHandle e) {
auto const& n = intValue(e);
if (!n) {
return false;
}
return *n == 1;
}
std::pair<std::vector<ExprHandle>, bool> broadcastShapesImpl(
const std::vector<ExprHandle>& a,
const std::vector<ExprHandle>& b) {
auto at = a.rbegin();
auto bt = b.rbegin();
std::vector<ExprHandle> ret;
bool hasBroadcast = false;
while (at != a.rend() || bt != b.rend()) {
if (at == a.rend()) {
hasBroadcast = true;
ret.push_back(*bt++);
continue;
}
if (bt == b.rend()) {
hasBroadcast = true;
ret.push_back(*at++);
continue;
}
// TODO: if neither *at nor *bt is 1, ensure they are identical
// expressions. Nb: `==` doesn't work since that simply produces a new
// ExprHandle.
ExprHandle dim = *at;
if (isOne(*at)) {
if (!isOne(*bt)) {
dim = *bt;
hasBroadcast = true;
}
}
ret.push_back(dim);
at++;
bt++;
}
std::reverse(ret.begin(), ret.end());
return {ret, hasBroadcast};
}
std::pair<std::vector<ExprHandle>, bool> broadcastShapesImpl(
std::vector<std::vector<ExprHandle>> shapes) {
size_t n = shapes.size();
if (n == 1) {
return {shapes[0], false};
}
auto res1 = broadcastShapesImpl(shapes[n - 2], shapes[n - 1]);
shapes[n - 2] = res1.first;
shapes.pop_back();
auto res2 = broadcastShapesImpl(shapes);
return {res2.first, (res1.second || res2.second)};
}
std::vector<ExprHandle> broadcastShapes(
std::vector<std::vector<ExprHandle>> shapes) {
return broadcastShapesImpl(shapes).first;
}
std::vector<ExprHandle> broadcastShapes(
const std::vector<ExprHandle>& a,
const std::vector<ExprHandle>& b) {
return broadcastShapesImpl(a, b).first;
}
std::vector<ExprHandle> valueShape(const ArgValue& v) {
if (auto b = c10::get_if<tensorexpr::BufHandle>(&v)) {
return b->dims();
}
return {};
}
ExprHandle tensorOrConstant(
const ArgValue& v,
const std::vector<ExprHandle>& axes) {
if (auto b = c10::get_if<BufHandle>(&v)) {
return broadcast(*b, axes);
}
return constant(v);
}
ExprHandle scalarOrConstant(const ArgValue& v) {
if (auto vh = c10::get_if<VarHandle>(&v)) {
return *vh;
}
return constant(v);
}
ExprHandle broadcast(BufHandle b, const std::vector<ExprHandle>& axes) {
return b.load(computeIndicesToBroadcast(axes, b.dims()));
}
ExprHandle constant(const ArgValue& v) {
if (auto s = c10::get_if<tensorexpr::VarHandle>(&v)) {
return *s;
} else if (auto d = c10::get_if<double>(&v)) {
return DoubleImm::make(*d);
} else if (auto i = c10::get_if<int64_t>(&v)) {
return LongImm::make(*i);
} else if (auto b = c10::get_if<bool>(&v)) {
return BoolImm::make(*b);
} else if (c10::get_if<ArgNone>(&v)) {
// This is just a placeholder so we don't throw. None-handling
// is operator-specific and should be handled properly in
// the operator-specific lowering code.
return IntImm::make(0);
} else {
throw unsupported_dtype("Trying to convert unsupported dtype to constant");
}
}
std::vector<ExprHandle> computeIndicesToBroadcast(
const std::vector<ExprHandle>& outputAxes,
const std::vector<ExprHandle>& inputSizes) {
if (outputAxes.size() < inputSizes.size()) {
throw malformed_input("Cannot broadcast to a lower rank tensor");
}
std::vector<ExprHandle> bcast;
auto axisIt = outputAxes.rbegin();
auto sizeIt = inputSizes.rbegin();
while (sizeIt != inputSizes.rend()) {
auto const& size = intValue(*sizeIt);
if (size && *size == 1) {
bcast.emplace_back(LongImm::make(0));
} else {
bcast.emplace_back(*axisIt);
}
++axisIt;
++sizeIt;
}
std::reverse(bcast.begin(), bcast.end());
return bcast;
}
Tensor computeChunk(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
return Compute(
"prim_constantchunk",
outputShape,
[inputs](const std::vector<VarHandle>& axes) {
const auto& b = c10::get<BufHandle>(inputs[0]);
int64_t chunkIdx = c10::get<int64_t>(inputs[1]);
int64_t dim = c10::get<int64_t>(inputs[2]);
int64_t chunks = c10::get<int64_t>(inputs[3]);
std::vector<ExprHandle> indices(axes.begin(), axes.end());
auto norm_dim = normalizeAndCheckIndex(dim, indices.size());
auto buf_info = getTensorInfo(b);
size_t step = buf_info->dims[norm_dim] / chunks;
std::vector<ExprHandle> new_indices;
for (int64_t i = 0; i < indices.size(); ++i) {
if (i == norm_dim) {
new_indices.push_back(
indices[i] + ExprHandle(immLike(indices[i], chunkIdx * step)));
} else {
new_indices.push_back(indices[i]);
}
}
return b.load(new_indices);
});
}
Tensor computeTranspose(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
auto A = c10::get<BufHandle>(inputs[0]);
// Trivial case of 0-dim and 1-dim tensors: transpose is just a copy
if (A.ndim() <= 1) {
return Compute(
"aten_transpose", outputShape, [&](std::vector<VarHandle> axes) {
TORCH_INTERNAL_ASSERT(
axes.size() <= 1,
buildErrorMessage("Invalid axes size in transpose"));
return A.load(axes);
});
}
// Usual case where transpose actually swaps dimensions
auto start_dim = at::maybe_wrap_dim(c10::get<int64_t>(inputs[1]), A.ndim());
auto to_dim = at::maybe_wrap_dim(c10::get<int64_t>(inputs[2]), A.ndim());
return Compute(
"aten_transpose", outputShape, [&](std::vector<VarHandle> axes) {
std::swap(axes[start_dim], axes[to_dim]);
return A.load(axes);
});
}
Tensor computeExpand(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
auto A = c10::get<BufHandle>(inputs[0]);
return Compute(
"aten_expand", outputShape, [&](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
return broadcast(A, indices);
});
}
Tensor computeReshape(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
auto A = c10::get<BufHandle>(inputs[0]);
if (A.ndim() == 0) {
return Compute(
"aten_view", outputShape, [&](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> empty_indices;
return A.load(empty_indices);
});
}
return Compute(
"aten_reshape", outputShape, [&](const std::vector<VarHandle>& axes) {
std::vector<VarHandle> new_axes;
assert(outputShape.size() == axes.size());
/*
Example for the index transformation. Assume we have a tensor A and
its view B:
A.size() = [6,2,3]
B = A.view(2,1,9,1,2)
In TE IR we would want to represent B as the following loopnest:
for (i1 in 0..2)
for (i2 in 0..1)
for (i3 in 0..9)
for (i4 in 0..1)
for (i5 in 0..2)
idx = i5 + i4*2 + i3*2 + i2*18 + i1*18
B[i1,i2,i3,i4,i5] = A[idx/(3*2), (idx/3)%2, idx%3]
*/
std::vector<ExprPtr> dims, indices;
for (size_t idx = 0; idx < outputShape.size(); idx++) {
dims.push_back(outputShape[idx].node());
indices.push_back(axes[idx].node());
}
auto ndim = dims.size();
std::vector<ExprPtr> strides(ndim);
strides[ndim - 1] = immLike(dims[ndim - 1], 1);
for (size_t i = 1; i < ndim; i++) {
strides[ndim - 1 - i] = alloc<Mul>(strides[ndim - i], dims[ndim - i]);
}
ExprHandle flat_idx = ExprHandle(flatten_index(dims, indices, strides));
std::vector<ExprHandle> orig_buf_indexes(A.ndim(), ExprHandle(0));
ExprHandle stride = ExprHandle(immLike(flat_idx, 1));
for (size_t idx = 0; idx < A.ndim(); idx++) {
size_t dim_idx = A.ndim() - idx - 1;
// We don't need to generate mod-div for the first dimension -
// ideally IRSimlifier would get rid of that for us, but for now
// let's just avoid generating it in the first place.
if (dim_idx > 0) {
orig_buf_indexes[dim_idx] = flat_idx / stride % A.dim(dim_idx);
} else {
orig_buf_indexes[dim_idx] = flat_idx / stride;
}
// In the example above the stride is initially 1 for dim_idx = 2,
// then it's 3 for dim_idx = 1, and then it's 3*2 for dim_idx = 0.
stride = stride * A.dim(dim_idx);
}
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return A.load(orig_buf_indexes);
});
}
Tensor computeFlatten(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
std::vector<int64_t> outputShapeVec;
for (const auto dim : c10::irange(outputShape.size())) {
outputShapeVec.push_back(outputShape[dim].AsNode<LongImm>()->value());
}
std::vector<ArgValue> reshapeInputs;
reshapeInputs.push_back(inputs[0]);
reshapeInputs.emplace_back(outputShapeVec);
return computeReshape(
reshapeInputs, outputShape, outputStrides, outputType, device);
}
static std::pair<ScalarType, std::vector<BufHandle>> processCatList(
const std::vector<BufHandle>& bufList) {
if (bufList.size() == 0) {
throw std::runtime_error("Empty input list is passed to aten::cat");
}
std::vector<BufHandle> bufInputs;
std::vector<BufHandle> nonEmptyInputs;
for (auto buf : bufList) {
bufInputs.push_back(buf);
TORCH_INTERNAL_ASSERT(
buf.node()->dims().size() > 0, buildErrorMessage("Invalid buf rank"));
// Ignore buffers that are 0-sized on any dimension.
bool hasEmptyDims = false;
for (const auto& dim : buf.dims()) {
if (dim.AsNode<LongImm>() && immediateAs<int64_t>(dim) == 0ll) {
hasEmptyDims = true;
break;
}
}
if (!hasEmptyDims) {
nonEmptyInputs.push_back(buf);
}
}
ScalarType highType = bufInputs[0].dtype().scalar_type();
for (const auto& input : bufInputs) {
auto maybe_dtype = input.dtype().scalar_type();
highType = promoteTypes(highType, maybe_dtype);
}
return {highType, nonEmptyInputs};
}
Tensor computeCatWoConditionals(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto input_list = c10::get<BufList>(inputs[0]);
auto arg_dim = inputs[1];
auto cat_info = processCatList(input_list);
ScalarType high_type = cat_info.first;
std::vector<BufHandle> non_empty_inputs = cat_info.second;
// Now we build one loop per input:
//
// for i
// for j
// for k
// output[i,j,k] = inp1[i,j,k]
// for i
// for j
// for k
// output[i,j+l1,k] = inp2[i,j,k]
// for i
// for j
// for k
// output[i,j+l2,k] = inp3[i,j,k]
auto output_sizes_expr = ExprHandleVectorToExprVector(outputShape);
auto output_strides_expr = ExprHandleVectorToExprVector(outputStrides);
auto output_buf = alloc<Buf>(
"aten_cat",
output_sizes_expr,
ToDtype(high_type),
nullptr,
output_strides_expr);
if (non_empty_inputs.size() == 0) {
return Tensor(
output_buf, alloc<tensorexpr::Block>(std::vector<StmtPtr>({})));
}
int64_t concat_dim = c10::get<int64_t>(arg_dim);
auto norm_concat_dim = normalizeAndCheckIndex(concat_dim, outputShape.size());
auto loop_order_fn = [&](const BufPtr& buf_) {
std::vector<int32_t> loop_order;
if (buf_->is_contiguous()) {
for (int32_t i = buf_->ndim() - 1; i >= 0; i--) {
loop_order.push_back(i);
}
} else if (buf_->is_contiguous(c10::MemoryFormat::ChannelsLast)) {
loop_order = {1, 3, 2, 0};
} else if (buf_->is_contiguous(c10::MemoryFormat::ChannelsLast3d)) {
loop_order = {1, 4, 3, 2, 0};
} else {
loop_order = {1, 2, 0};
}
return loop_order;
};
auto gen_code_for_input = [&](const BufHandle& inp,
size_t inp_pos,
ExprPtr concat_dim_size,
const std::vector<ExprHandle>& dims) {
std::vector<VarPtr> for_vars(dims.size());
std::vector<ExprPtr> load_indices(dims.size());
std::vector<ExprPtr> store_indices(dims.size());
for (int64_t i = 0; i < dims.size(); ++i) {
for_vars[i] = alloc<Var>(
"i" + c10::to_string(inp_pos) + "_" + c10::to_string(i),
dims[i].dtype());
load_indices[i] = for_vars[i];
if (i == norm_concat_dim) {
store_indices[i] = alloc<Add>(for_vars[i], concat_dim_size);
} else {
store_indices[i] = for_vars[i];
}
}
auto inp_buf = inp.node();
auto load_expr = alloc<Load>(inp_buf, load_indices);
auto load_promoted = promoteToDtype(ExprHandle(load_expr), high_type);
StmtPtr st = alloc<Store>(output_buf, store_indices, load_promoted.node());
auto loop_order = loop_order_fn(inp.node());
for (auto dim_index : loop_order) {
st = alloc<For>(
for_vars[dim_index],
immLike(dims[dim_index], 0),
dims[dim_index].node(),
st);
}
return st;
};
ExprPtr concat_dim_size = nullptr;
auto block = alloc<tensorexpr::Block>(std::vector<StmtPtr>({}));
for (size_t i = 0; i < non_empty_inputs.size(); ++i) {
auto input_dims =
ExprVectorToExprHandleVector(non_empty_inputs[i].node()->dims());
if (concat_dim_size == nullptr) {
concat_dim_size = immLike(input_dims[norm_concat_dim], 0);
}
block->append_stmt(gen_code_for_input(
non_empty_inputs[i], i, concat_dim_size, input_dims));
concat_dim_size =
alloc<Add>(concat_dim_size, input_dims[norm_concat_dim].node());
}
return Tensor(output_buf, IRSimplifier::simplify(block));
}
Tensor computeCat(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
if (device == at::kCPU && getCatWoConditionals()) {
return computeCatWoConditionals(inputs, outputShape, outputStrides);
}
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto inputList = c10::get<BufList>(inputs[0]);
auto argDim = inputs[1];
auto catInfo = processCatList(inputList);
ScalarType highType = catInfo.first;
std::vector<BufHandle> nonEmptyInputs = catInfo.second;
return Compute(
"aten_cat",
outputShape,
outputStrides,
[&](const std::vector<VarHandle>& axes) {
if (nonEmptyInputs.size() == 0) {
return ExprHandle(0);
}
int64_t dim_ = c10::get<int64_t>(argDim);
auto dim = normalizeAndCheckIndex(dim_, axes.size());
// Promote input types.
// Note that we need to consider all inputs, including empty - they
// also affect the resultant dtype.
// Now we know the final dtype, we know what inputs are non-empty,
// and we know that there is at least one such an input. With all
// that we construct a tensor expression performing the
// concatenation.
// The expression we build here is a cascading if-then-else that
// essentially represents:
//
// inp1[i, j, k] if 0 < i < l1,
// out[i,j,k] = inp2[i, j-l1, k] if l1 =< i < l1 + l2,
// ...
// inpN[i, j-l_N_1, k] if l1+l2+...l_N_1 < i
// where l_i is the corresponding size of the i-th input.
std::vector<ExprHandle> newAxes(axes.begin(), axes.end());
ExprHandle load = promoteToDtype(
tensorOrConstant(nonEmptyInputs[0], newAxes), highType);
auto offset = ExprHandle(nonEmptyInputs[0].node()->dim(dim));
newAxes[dim] = newAxes[dim] - offset;
for (size_t ii = 1; ii < nonEmptyInputs.size(); ++ii) {
auto input = nonEmptyInputs[ii];
load = ifThenElse(
CompareSelect::make(axes[dim], offset, kLT),
load,
promoteToDtype(tensorOrConstant(input, newAxes), highType));
offset = offset + ExprHandle(input.node()->dim(dim));
newAxes[dim] = axes[dim] - offset;
}
return load;
});
}
Tensor computeEmbedding(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device) {
Dtype dtype = kFloat;
if (outputType) {
dtype = Dtype(*outputType);
}
BufHandle ResultBuf("emb", outputShape, dtype);
const BufHandle& w = c10::get<BufHandle>(inputs[0]);
const BufHandle& indices = c10::get<BufHandle>(inputs[1]);
StmtPtr s =
ExternalCall::make(ResultBuf, "nnc_aten_embedding", {w, indices}, {});
return Tensor(ResultBuf.node(), s);
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|