1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
#pragma once
#include <torch/csrc/jit/tensorexpr/fwd_decls.h>
#include <torch/csrc/jit/tensorexpr/lowerings.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch {
namespace jit {
namespace tensorexpr {
struct TensorInfo {
std::vector<int64_t> dims;
c10::ScalarType dtype;
};
c10::optional<TensorInfo> getTensorInfo(BufHandle b);
int64_t normalizeAndCheckIndex(int64_t idx, int64_t list_size);
// Convert boolean to integer, if needed.
ExprHandle boolToInteger(const ExprHandle& x);
ExprHandle promoteToDtype(ExprHandle e, ScalarType dt);
void promoteInputs(
std::vector<ExprHandle>& inputs,
const int typeConstraints = kAllTypes);
ExprHandle promoteIntegerToDefaultType(const ExprHandle& e);
ExprHandle promoteHalfToFloat(const ExprHandle& e);
ExprHandle demoteOutput(
const ExprHandle& e,
const c10::optional<ScalarType> type);
std::vector<ExprHandle> broadcastShapes(
std::vector<std::vector<ExprHandle>> shapes);
std::vector<ExprHandle> broadcastShapes(
const std::vector<ExprHandle>& a,
const std::vector<ExprHandle>& b);
std::vector<ExprHandle> valueShape(const ArgValue& v);
ExprHandle tensorOrConstant(
const ArgValue& v,
const std::vector<ExprHandle>& axes);
ExprHandle scalarOrConstant(const ArgValue& v);
ExprHandle broadcast(BufHandle b, const std::vector<ExprHandle>& axes);
ExprHandle constant(const ArgValue& v);
ExprHandle clamp(
const ExprHandle& cmin,
const ExprHandle& cmax,
const ExprHandle& input);
Tensor computeChunk(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeTranspose(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeExpand(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeReshape(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeFlatten(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeCatWoConditionals(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape);
Tensor computeCat(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
Tensor computeEmbedding(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const c10::optional<ScalarType>& outputType,
at::Device device);
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|