1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
#include <c10/util/irange.h>
#include <torch/csrc/lazy/core/debug_util.h>
#include <torch/csrc/lazy/backend/backend_device.h>
#include <torch/csrc/lazy/core/helpers.h>
#include <torch/csrc/lazy/core/ir.h>
#include <torch/csrc/lazy/core/ir_dump_util.h>
#include <torch/csrc/lazy/core/ir_util.h>
#include <torch/csrc/lazy/core/unique.h>
#include <fstream>
#include <mutex>
#include <sstream>
#include <unordered_set>
namespace torch {
namespace lazy {
namespace {
std::string GetEnvString(const char* name, const std::string& defval) {
const char* env = std::getenv(name);
return env != nullptr ? env : defval;
}
DebugUtil::GraphFormat DefaultGraphFormat() {
std::string fmt_str = GetEnvString("LTC_SAVE_TENSORS_FMT", "text");
if (fmt_str == "text") {
return DebugUtil::GraphFormat::kText;
} else if (fmt_str == "backend") {
return DebugUtil::GraphFormat::kBackend;
} else if (fmt_str == "dot") {
return DebugUtil::GraphFormat::kDot;
}
LOG(ERROR) << "Invalid save graph format: " << fmt_str;
return DebugUtil::GraphFormat::kText;
}
std::unordered_set<std::string>* LoadExperiments() {
std::unique_ptr<std::unordered_set<std::string>> xset =
std::make_unique<std::unordered_set<std::string>>();
std::string experiments = GetEnvString("LTC_EXPERIMENTAL", "");
std::vector<std::string> experiment_list =
torch::lazy::StrSplit(experiments, ':');
for (auto& name : experiment_list) {
xset->insert(name);
}
return xset.release();
}
} // namespace
std::vector<SourceLocation> NoPythonFrames() {
SourceLocation dummy_loc;
dummy_loc.file = "No Python Frames";
return {dummy_loc};
}
std::function<std::vector<SourceLocation>()>& GetPythonFramesFunction() {
static std::function<std::vector<SourceLocation>()> func_ = NoPythonFrames;
return func_;
}
DebugUtil::GraphFormat DebugUtil::GetDefaultGraphFormat() {
static GraphFormat format = DefaultGraphFormat();
return format;
}
std::string GetFirstUserFrameInPython() {
std::string empty;
if (!torch::lazy::GetPythonFramesFunction()) {
return empty;
}
auto frames = torch::lazy::GetPythonFramesFunction()();
for (auto i = frames.size(); i > 0; i--) {
auto& loc = frames[i - 1];
if (loc.file.find("site-packages") == std::string::npos) {
std::stringstream ss;
ss << loc.file << " " << loc.function << " " << loc.line;
return ss.str();
}
}
return empty;
}
std::string DebugUtil::GetTensorsGraphInfo(
c10::ArrayRef<torch::lazy::LazyTensorPtr> tensors,
const std::vector<size_t>* indices,
GraphFormat format) {
std::vector<torch::lazy::Node*> root_nodes;
std::vector<torch::lazy::Value> root_values;
std::vector<torch::lazy::hash_t> root_hashes;
torch::lazy::Unique<torch::lazy::BackendDevice> unique_device;
if (indices != nullptr) {
for (auto index : *indices) {
const torch::lazy::LazyTensorPtr& tensor = tensors[index];
torch::lazy::Value ir_value = tensor->CurrentIrValue();
if (ir_value) {
root_nodes.push_back(ir_value.node.get());
root_hashes.push_back(ir_value.hash());
root_values.push_back(std::move(ir_value));
unique_device.set(tensor->GetDevice());
}
}
} else {
for (auto& tensor : tensors) {
torch::lazy::Value ir_value = tensor->CurrentIrValue();
if (ir_value) {
root_nodes.push_back(ir_value.node.get());
root_hashes.push_back(ir_value.hash());
root_values.push_back(std::move(ir_value));
unique_device.set(tensor->GetDevice());
}
}
}
std::stringstream ss;
// Call into a function pointer that may backed by python or empty depending
// on runtime
std::vector<SourceLocation> frames = GetPythonFramesFunction()();
ss << "Python Stacktrace:\n";
for (auto& location : frames) {
ss << " " << location.function << " (" << location.file << ":"
<< location.line << ")\n";
}
ss << "\nHashes: (";
for (const auto i : c10::irange(root_hashes.size())) {
if (i > 0) {
ss << ", ";
}
ss << torch::lazy::HashToString(root_hashes[i]);
}
ss << ")\n";
std::string graph_str;
if (format == GraphFormat::kText) {
graph_str = torch::lazy::DumpUtil::ToText(root_nodes);
} else if (format == GraphFormat::kDot) {
graph_str = torch::lazy::DumpUtil::ToDot(root_nodes);
} else if (format == GraphFormat::kBackend) {
graph_str = torch::lazy::DumpUtil::ToBackend(
root_values,
unique_device ? *unique_device : torch::lazy::BackendDevice());
} else {
LOG(ERROR) << "Invalid graph format: " << format;
}
ss << "\n## BEGIN_GRAPH\n" << graph_str << "\n## END_GRAPH\n\n";
return ss.str();
}
void DebugUtil::SaveTensorsGraphInfo(
const char* name,
c10::ArrayRef<torch::lazy::LazyTensorPtr> tensors,
const std::vector<size_t>* indices,
GraphFormat format) {
static const std::string save_file =
GetEnvString("LTC_SAVE_TENSORS_FILE", "");
if (!save_file.empty()) {
static std::mutex lock;
std::string info = GetTensorsGraphInfo(tensors, indices, format);
std::lock_guard<std::mutex> guard(lock);
std::ofstream graph_file(save_file, std::ios_base::app);
graph_file << "[" << name << "]\n" << info << "\n";
}
}
bool DebugUtil::ExperimentEnabled(const std::string& name) {
static const std::unordered_set<std::string>* xset = LoadExperiments();
return xset->find(name) != xset->end();
}
} // namespace lazy
} // namespace torch
|