File: hash.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (233 lines) | stat: -rw-r--r-- 7,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/**
 * Hash utils in this file is adapted from PyTorch/XLA
 * https://github.com/pytorch/xla/blob/e0e5f937a0ba8d904f9608137dc8c51ba439df2d/third_party/xla_client/util.h
 */
#pragma once

#include <ATen/Tensor.h>
#include <c10/core/Scalar.h>
#include <c10/util/int128.h>
#include <torch/csrc/Export.h>
#include <cstring>
#include <set>
#include <string>
#include <vector>

namespace torch {
namespace lazy {

using size_t = std::size_t;

class TORCH_API hash_t : public c10::uint128 {
 public:
  // Swich from typedef hash_t = uint128 to provide explicit casters
  hash_t(int8_t val) : uint128(static_cast<uint32_t>(val)) {}
  hash_t(int16_t val) : uint128(static_cast<uint32_t>(val)) {}
  hash_t(int32_t val) : uint128(static_cast<uint32_t>(val)) {}
  hash_t(int64_t val) : uint128(static_cast<uint64_t>(val)) {}
  hash_t(uint32_t val) : uint128(val) {}
  hash_t(uint64_t val) : uint128(val) {}
  hash_t(uint128 val) : uint128(val) {}
  hash_t(uint64_t top, uint64_t bottom) : uint128(top, bottom) {}
  hash_t() : uint128() {}
};

// Std* functions use 64-bit hash
size_t TORCH_API StdDataHash(const void* data, size_t size);

size_t TORCH_API StdHashCombine(uintmax_t a, uintmax_t b);

// Other functions are all 128-bit
hash_t TORCH_API HashBlock(const void* data, size_t n, const hash_t& seed);

hash_t TORCH_API DataHash(const void* data, size_t size);

hash_t TORCH_API HashCombine(const hash_t& a, const hash_t& b);

size_t TORCH_API HashReduce(const hash_t& a);

// Returns a string representation of a hash
std::string TORCH_API HashToString(const hash_t& a);

struct HashReducer {
  size_t operator()(const hash_t& value) const {
    return HashReduce(value);
  }
};

static inline hash_t StringHash(const char* data) {
  return DataHash(data, std::strlen(data));
}

// Automatic templated implementation for 'arithmetic' types
template <
    typename T,
    typename std::enable_if<std::is_arithmetic<T>::value>::type* = nullptr>
hash_t Hash(const T& value) {
  return DataHash(&value, sizeof(value));
}

// added because on macos builds the vector<bool> specialization
// breaks falling through to the templated arithmetic types above
hash_t TORCH_API Hash(const std::vector<bool>& value);

// Specialiazed implementations for proprietary types
static inline hash_t Hash(const c10::ScalarType& value) {
  return DataHash(&value, sizeof(value));
}

static inline hash_t Hash(const c10::MemoryFormat& value) {
  return DataHash(&value, sizeof(value));
}

static inline hash_t Hash(const c10::DeviceType& value) {
  return DataHash(&value, sizeof(value));
}

static inline hash_t Hash(const c10::Device& value) {
  return HashCombine(Hash(value.type()), Hash(value.index()));
}

static inline hash_t Hash(const c10::Layout& value) {
  return DataHash(&value, sizeof(value));
}

static inline hash_t Hash(const c10::Scalar& value) {
  switch (value.type()) {
    case c10::ScalarType::ComplexDouble:
      return Hash(value.toComplexDouble());
    case c10::ScalarType::Double:
      return Hash(value.toDouble());
    case c10::ScalarType::Long:
      return Hash(value.toLong());
    case c10::ScalarType::Bool:
      return Hash(value.toBool());
    default:
      TORCH_INTERNAL_ASSERT(false, "Unknown scalar type.", value.type());
  }
}

static inline hash_t TensorHash(const at::Tensor& tensor) {
  at::Tensor ctensor = tensor.contiguous();
  int64_t size = ctensor.numel() * ctensor.element_size();
  switch (ctensor.scalar_type()) {
    case at::ScalarType::Bool:
      return DataHash(ctensor.data_ptr<bool>(), size);
    case at::ScalarType::Byte:
      return DataHash(ctensor.data_ptr<uint8_t>(), size);
    case at::ScalarType::Char:
      return DataHash(ctensor.data_ptr<int8_t>(), size);
    case at::ScalarType::Short:
      return DataHash(ctensor.data_ptr<int16_t>(), size);
    case at::ScalarType::Int:
      return DataHash(ctensor.data_ptr<int32_t>(), size);
    case at::ScalarType::Long:
      return DataHash(ctensor.data_ptr<int64_t>(), size);
    case at::ScalarType::Float:
      return DataHash(ctensor.data_ptr<float>(), size);
    case at::ScalarType::Double:
      return DataHash(ctensor.data_ptr<double>(), size);
    case at::ScalarType::BFloat16:
      return DataHash(ctensor.data_ptr<at::BFloat16>(), size);
    case at::ScalarType::Half:
      return DataHash(ctensor.data_ptr<at::Half>(), size);
    case at::ScalarType::ComplexFloat:
      return DataHash(ctensor.data_ptr<c10::complex<float>>(), size);
    case at::ScalarType::ComplexDouble:
      return DataHash(ctensor.data_ptr<c10::complex<double>>(), size);
    default:
      TORCH_INTERNAL_ASSERT(
          false, "Unsupported scalar type:", ctensor.scalar_type());
  }
}

static inline hash_t Hash(const std::string& value) {
  return DataHash(value.data(), value.size());
}

static inline hash_t Hash(const c10::string_view& value) {
  return DataHash(value.data(), value.size());
}
// Taken from glibc's implementation of hashing optionals,
// we want to include a contribution to the hash to distinguish
// cases where one or another option was null, but we hope it doesn't
// collide with an actually scalar value.
//
// Use an arbitrary randomly-selected 64-bit integer rather than a
// small constant that we then hash at runtime so we don't have to
// repeatedly hash a constant at runtime.
static const int64_t kNullOpt = 0x8655d738f3678dda;

// Hashing for c10::optional types contributes to hash
// for optionals with null value, important to distinguish
// between <nullopt, non-nullopt> and <non-nullopt, nullopt> cases
template <typename T>
hash_t Hash(const c10::optional<T>& value) {
  if (value.has_value()) {
    return Hash(value.value());
  } else {
    return kNullOpt;
  }
}

// Hashing of containers
// Forward declare to allow hashes of vectors of vectors to work.
template <typename T>
hash_t ContainerHash(const T& values);

template <typename T>
hash_t Hash(const std::vector<T>& values) {
  return ContainerHash(values);
}

// Need a special case for optional<container>?
template <typename T>
hash_t Hash(const c10::optional<std::vector<T>>& value) {
  if (value.has_value()) {
    return ContainerHash(value.value());
  } else {
    return kNullOpt;
  }
}

template <typename T>
hash_t Hash(const std::set<T>& values) {
  return ContainerHash(values);
}

template <typename T, typename S>
hash_t Hash(const std::pair<T, S>& values) {
  return HashCombine(Hash(values.first), Hash(values.second));
}

static inline hash_t Hash(const hash_t& value) {
  return value;
}

template <typename T>
hash_t Hash(c10::ArrayRef<T> values) {
  return ContainerHash(values);
}

template <typename T>
hash_t ContainerHash(const T& values) {
  hash_t h(static_cast<uint64_t>(0x85ebca77c2b2ae63));
  for (const auto& value : values) {
    h = HashCombine(h, Hash(value));
  }
  return h;
}

// Varargs hashing
template <typename T = void>
hash_t MHash() {
  return hash_t(static_cast<uint64_t>(0x165667b19e3779f9));
}

template <typename T, typename... Targs>
hash_t MHash(T value, Targs... Fargs) {
  return HashCombine(Hash(value), MHash(Fargs...));
}

} // namespace lazy
} // namespace torch