1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
#include <torch/csrc/lazy/core/config.h>
#include <torch/csrc/lazy/core/tensor.h>
#include <c10/util/irange.h>
#include <torch/csrc/lazy/core/helpers.h>
#include <torch/csrc/lazy/core/ir_builder.h>
#include <torch/csrc/lazy/core/ir_dump_util.h>
#include <torch/csrc/lazy/core/lazy_graph_executor.h>
#include <torch/csrc/lazy/core/metrics.h>
#include <torch/csrc/lazy/core/tensor_impl.h>
#include <torch/csrc/lazy/core/tensor_util.h>
#include <ATen/FunctionalTensorWrapper.h>
namespace torch {
namespace lazy {
namespace {
LazyTensorPtr GetOrCreateLtcTensor(
const at::Tensor& tensor,
const BackendDevice& device) {
if (!tensor.defined()) {
return torch::lazy::LazyTensorPtr();
}
auto lazy_tensor = TryGetLtcTensor(tensor);
return lazy_tensor ? lazy_tensor : LazyTensor::Create(tensor, device);
}
} // namespace
LazyTensor::Data::~Data() {
LazyGraphExecutor::Get()->UnregisterTensor(this);
}
LazyTensorPtr LazyTensor::Create(
const at::Tensor& tensor,
const BackendDevice& device) {
TORCH_CHECK(tensor.device().type() != at::kLazy);
LazyTensorPtr lazy_tensor =
c10::make_intrusive<LazyTensor>(LazyTensor(tensor, device));
LazyGraphExecutor::Get()->RegisterTensor(lazy_tensor->data_ptr());
return lazy_tensor;
}
LazyTensorPtr LazyTensor::Create(Value ir_value, const BackendDevice& device) {
LazyTensorPtr lazy_tensor =
c10::make_intrusive<LazyTensor>(LazyTensor(std::move(ir_value), device));
LazyGraphExecutor::Get()->RegisterTensor(lazy_tensor->data_ptr());
return lazy_tensor;
}
LazyTensorPtr LazyTensor::Create(
std::shared_ptr<LazyView> view,
const BackendDevice& device) {
LazyTensorPtr lazy_tensor =
c10::make_intrusive<LazyTensor>(LazyTensor(std::move(view), device));
LazyGraphExecutor::Get()->RegisterTensor(lazy_tensor->data_ptr());
return lazy_tensor;
}
LazyTensorPtr LazyTensor::Create(BackendDataPtr handle) {
LazyTensorPtr lazy_tensor =
c10::make_intrusive<LazyTensor>(LazyTensor(std::move(handle)));
LazyGraphExecutor::Get()->RegisterTensor(lazy_tensor->data_ptr());
return lazy_tensor;
}
LazyTensorPtr LazyTensor::Create(std::shared_ptr<Data> data) {
return c10::make_intrusive<LazyTensor>(LazyTensor(std::move(data)));
}
LazyTensor::LazyTensor(const at::Tensor& tensor, const BackendDevice& device)
: LazyTensor(std::make_shared<Data>(tensor, device)) {}
LazyTensor::LazyTensor(BackendDataPtr handle)
: LazyTensor(std::make_shared<Data>(handle, handle->device())) {}
LazyTensor::LazyTensor(Value ir_value, const BackendDevice& device)
: LazyTensor(std::make_shared<Data>(std::move(ir_value), device)) {
TryLimitGraphSize();
}
LazyTensor::LazyTensor(
std::shared_ptr<LazyView> view,
const BackendDevice& device)
: LazyTensor(std::make_shared<Data>(std::move(view), device)) {}
LazyTensor::LazyTensor(std::shared_ptr<Data> data)
: data_(std::move(data)),
storage_(c10::Storage(
{},
0,
c10::DataPtr(nullptr, backendDeviceToAtenDevice(data_->device)))) {}
LazyTensor::Data* LazyTensor::data() const {
TORCH_CHECK(data_ != nullptr, "Trying to access a null cursor");
return data_.get();
}
int64_t LazyTensor::size(int64_t dim) const {
auto tensor_shape = shape();
int rank = tensor_shape.Get().dim();
int dim_index = GetCanonicalDimensionIndex(dim, rank);
return tensor_shape.Get().size(dim_index);
}
at::ScalarType LazyTensor::dtype() const {
return shape().Get().scalar_type();
}
MaybeRef<Shape> LazyTensor::shape() const {
if (data()->view != nullptr) {
return data()->view->shape();
}
if (data()->handle != nullptr) {
return Shape(data()->handle->shape());
}
if (data()->ir_value) {
// TODO(whc) remove shape from LazyTensor API too!
return data()->ir_value.shape();
}
TORCH_CHECK(data()->tensor_data);
return Shape(
data()->tensor_data->scalar_type(),
ToI64Vector(data()->tensor_data->sizes()));
}
const BackendDevice& LazyTensor::GetDevice() const {
return data()->device;
}
int64_t LazyTensor::GetUniqueId() const {
return data()->unique_id;
}
std::ptrdiff_t LazyTensor::GetViewAliasId() const {
return data()->view != nullptr
? reinterpret_cast<std::ptrdiff_t>(data()->view->alias().get())
: 0;
}
BackendDataPtr LazyTensor::GetDataHandle() {
// Data can coexist with a view, but we need to check that the view did
// not receive any updates before calling the current IR valid.
bool up_to_date = true;
Value ir_value;
if (data()->view != nullptr) {
bool updated = false;
std::tie(ir_value, updated) = GetViewUpdate(data()->view);
up_to_date = !updated;
}
if (up_to_date) {
BackendDataPtr handle = CurrentDataHandle();
if (handle != nullptr) {
TORCH_CHECK(
handle->HasValue(),
"Trying to access data while an async operation is in flight: ",
handle->shape().to_string());
return handle;
}
}
if (ir_value) {
// The view gave us an updated IR value. We usually do not have a valid IR
// value field together with a view, but to allow code reuse in
// ApplyPendingGraph() we temporarily set it here. The following call to
// ApplyPendingGraph() will clear it.
AssignIrValue(std::move(ir_value));
}
if (data()->ir_value) {
ApplyPendingGraph();
} else {
TORCH_CHECK(data()->tensor_data);
data()->handle = TensorToDataHandle(*data()->tensor_data, GetDevice());
}
return data()->handle;
}
BackendDataPtr LazyTensor::CurrentDataHandle() const {
return data()->handle;
}
void LazyTensor::SetDataHandle(BackendDataPtr handle) {
SetDataHandle(std::move(handle), /*sync=*/true);
}
void LazyTensor::SetDataHandle(BackendDataPtr handle, bool sync) {
data()->handle = std::move(handle);
// Assigning a device data should always clear the IR node, to allow graph
// trimming. A view cannot be reset though, unless we are at a step-end sync.
AssignIrValue(Value());
if (sync) {
data()->view = nullptr;
data()->tensor_data = c10::nullopt;
}
}
void LazyTensor::SetIrValue(Value ir_value) {
data()->handle = nullptr;
data()->tensor_data = c10::nullopt;
if (data()->view != nullptr) {
// If we have an active view, and a SetIrValue() happens, it means we are
// within an in-place execution context, and we need to update the view's
// alias as well.
data()->view = UpdateView(data()->view, std::move(ir_value));
data()->generation += 1;
} else {
AssignIrValue(std::move(ir_value));
TryLimitGraphSize();
}
}
void LazyTensor::SetInPlaceIrValue(Value ir_value) {
auto tensor_shape = shape();
if (tensor_shape.Get().scalar_type() != ir_value.shape().scalar_type()) {
ir_value =
MakeCast(ir_value, tensor_shape.Get().scalar_type(), c10::nullopt);
}
SetIrValue(std::move(ir_value));
}
void LazyTensor::AssignIrValue(Value ir_value) const {
data()->ir_value = std::move(ir_value);
data()->generation += 1;
}
void LazyTensor::TryLimitGraphSize() {
if (data()->ir_value &&
LazyGraphExecutor::Get()->IncTrimCounter() %
FLAGS_torch_lazy_trim_graph_check_frequency ==
0) {
size_t graph_size = Util::GetGraphSize({data()->ir_value.node.get()});
if (graph_size > FLAGS_torch_lazy_trim_graph_size) {
TORCH_LAZY_COUNTER("TrimIrGraph", 1);
ApplyPendingGraph();
}
}
}
Value LazyTensor::GetIrValue() const {
Value ir_value = CurrentIrValue();
if (ir_value) {
return ir_value;
}
BackendDataPtr handle = CurrentDataHandle();
if (handle != nullptr) {
// In case of tensor node, we do not clear the data when we set the IR
// node. This because we want further calls to GetIrValue() to fetch the
// same IR node, and not create new ones (even though the lowering context
// will still collapse them all into a single parameter op). So the call
// which wants the data will still find it, w/out having to fetch it via
// a computation client from-server call.
AssignIrValue(CreateTensorNode(handle, /*read_only=*/false));
return data()->ir_value;
}
c10::optional<at::Tensor> tensor_data = CurrentTensorData();
TORCH_CHECK(tensor_data);
AssignIrValue(GetIrValueForTensor(*tensor_data, GetDevice()));
return data()->ir_value;
}
Value LazyTensor::CurrentIrValue() const {
if (data()->view != nullptr) {
return std::get<0>(GetViewUpdate(data()->view));
}
return data()->ir_value;
}
void LazyTensor::SetTensorData(at::Tensor tensor_data) {
data()->tensor_data = std::move(tensor_data);
}
c10::optional<at::Tensor> LazyTensor::CurrentTensorData() const {
if (data()->view != nullptr && !data()->view->IsUpToDate()) {
return c10::nullopt;
}
return data()->tensor_data;
}
Value LazyTensor::GetIrValueForTensor(
const at::Tensor& tensor,
const BackendDevice& device) const {
BackendDataPtr data;
bool read_only = false;
if (tensor.dim() == 0 && tensor.numel() == 1) {
at::Scalar value = tensor.item();
if (IsSpecialScalar(value)) {
return MakeScalar(value, tensor.scalar_type());
}
data = LazyGraphExecutor::Get()->GetDeviceData(tensor.cpu(), device);
read_only = true;
} else {
TORCH_LAZY_TIMED("IrValueTensorToDataHandle");
data = TensorToDataHandle(tensor, device);
}
return CreateTensorNode(std::move(data), read_only);
}
std::tuple<Value, bool> LazyTensor::GetViewUpdate(
const std::shared_ptr<LazyView>& view) const {
auto value_with_update = view->GetViewIrNode();
if (std::get<1>(value_with_update)) {
data()->handle = nullptr;
data()->tensor_data = c10::nullopt;
}
return value_with_update;
}
std::shared_ptr<LazyView> LazyTensor::UpdateView(
std::shared_ptr<LazyView> view,
Value ir_value) const {
if (ir_value.shape().sizes() != view->shape().sizes()) {
TORCH_CHECK(ir_value.shape().numel() == view->shape().numel());
ViewInfo view_info(
ViewInfo::Type::kReshape, ir_value.shape(), view->shape());
view = view->CreateSubView(view_info.shape, view_info);
}
view->Update(std::move(ir_value));
return view;
}
void LazyTensor::SetSubView(ViewInfo view_info) const {
data()->view = data()->view->CreateSubView(view_info.shape, view_info);
data()->generation += 1;
}
void LazyTensor::ModifyCurrentView(ViewInfo view_info) const {
if (data()->view != nullptr) {
SetSubView(view_info);
return;
}
// This node is not a view. Since this function is meant to modify a view
// in place, we need to turn this existing tensor into a view.
Value ir_value = GetIrValue();
std::shared_ptr<Alias> alias = std::make_shared<Alias>(ir_value);
data()->view = std::make_shared<LazyView>(view_info.shape, alias, view_info);
AssignIrValue(Value());
}
std::shared_ptr<LazyView> LazyTensor::CreateView(ViewInfo view_info) const {
if (data()->view != nullptr) {
return data()->view->CreateSubView(view_info.shape, view_info);
}
// This node is not a view, and creating a view forks the current node into
// becoming one itself. This means creating an alias with the current IR
// Node, and using the same alias for the created IR Node.
Value ir_value = GetIrValue();
std::shared_ptr<Alias> alias = std::make_shared<Alias>(ir_value);
ViewInfo this_view_info(
ViewInfo::Type::kNoOp, ir_value.shape(), ir_value.shape());
data()->view = std::make_shared<LazyView>(
ir_value.shape(), alias, std::move(this_view_info));
AssignIrValue(Value());
return std::make_shared<LazyView>(view_info.shape, alias, view_info);
}
LazyTensorPtr LazyTensor::CreateViewTensor(ViewInfo view_info) const {
auto new_tensor = Create(CreateView(std::move(view_info)), GetDevice());
new_tensor->storage_ = Storage();
return new_tensor;
}
at::Tensor LazyTensor::ToTensor(bool detached) {
at::Tensor tensor;
c10::optional<at::Tensor> tensor_data = CurrentTensorData();
if (!tensor_data) {
LazyGraphExecutor::Get()->DeviceBarrier(GetDevice());
// The GetDataHandle() call will trigger an ApplyPendingGraph() if an IR
// Node is available on the tensor.
std::vector<at::Tensor> tensors =
DataHandlesToTensors({GetDataHandle()}, dtype());
tensor = std::move(tensors.front());
if (!detached) {
SetTensorData(tensor);
}
} else {
tensor = *tensor_data;
if (detached) {
if (data()->ir_value || data()->handle != nullptr ||
data()->view != nullptr) {
// If we have other authoritive sources, just drop our reference and
// transfer it to the caller.
data()->tensor_data = c10::nullopt;
} else {
// Otherwise we need to make a copy to prevent the caller changing our
// version.
tensor = CopyTensor(tensor);
}
}
}
return tensor;
}
void LazyTensor::ShallowCopyTo(LazyTensorPtr dest) const {
dest->SetIrValue(GetIrValue());
}
void LazyTensor::SetTensor(at::Tensor tensor) {
SetTensorData(tensor);
data()->view = nullptr;
data()->handle = nullptr;
AssignIrValue(Value());
}
void LazyTensor::UpdateFromTensor(at::Tensor tensor, bool sync) {
if (sync) {
at::Tensor typed_tensor = CopyTensor(tensor, dtype(), /*copy=*/false);
SetIrValue(GetIrValueForTensor(typed_tensor, GetDevice()));
} else {
SetTensorData(tensor);
data()->handle = nullptr;
AssignIrValue(Value());
if (data()->view != nullptr) {
Value ir_value = GetIrValueForTensor(tensor, GetDevice());
data()->view = UpdateView(data()->view, std::move(ir_value));
}
}
}
void LazyTensor::UpdateFromTensorOut(at::Tensor tensor) {
if (data()->view != nullptr && shape().Get().numel() != tensor.numel()) {
data()->view = nullptr;
}
UpdateFromTensor(std::move(tensor), /*sync=*/false);
}
void LazyTensor::UpdateFromTensorOut(const LazyTensorPtr& tensor) {
if (data()->view != nullptr &&
shape().Get().numel() != tensor->shape().Get().numel()) {
data()->view = nullptr;
}
SetIrValue(tensor->GetIrValue());
}
Value LazyTensor::CreateTensorNode(BackendDataPtr data, bool read_only) const {
data->SetInfo(std::make_shared<LazyGraphExecutor::DeviceDataInfo>(
GetUniqueId(), read_only));
return MakeDeviceData(std::move(data));
}
std::vector<LazyTensorPtr> LazyTensor::MakeOutputTensors(NodePtr node) const {
std::vector<LazyTensorPtr> tensors;
tensors.reserve(node->num_outputs());
for (const auto i : c10::irange(node->num_outputs())) {
tensors.push_back(Create(Value(node, i), GetDevice()));
}
return tensors;
}
LazyTensorPtr LazyTensor::CopyTensorToDevice(const BackendDevice& device) {
// TODO: This can be optimized.
return Create(ToTensor(/*detached=*/true), device);
}
void LazyTensor::ApplyPendingGraph() {
LazyGraphExecutor::Get()->DeviceBarrier(GetDevice());
// This method is called to ensure that the tensor data is available on
// device, so that a call to CurrentDataHandle() returns a valid pointer.
if (CurrentDataHandle() == nullptr) {
std::vector<LazyTensorPtr> tensors(
{c10::make_intrusive<LazyTensor>(LazyTensor(*this))});
LazyGraphExecutor::Get()->SyncTensorsGraph(
&tensors,
{},
/*wait=*/true,
/*sync_ltc_data=*/false);
}
}
int64_t LazyTensor::GetNextTensorId() {
static std::atomic<int64_t>* id_generator = new std::atomic<int64_t>(1);
return id_generator->fetch_add(1);
}
torch::lazy::Value GetTensorList(at::ITensorListRef tensors) {
std::vector<Value> values;
for (const auto& t : tensors) {
auto* impl = dynamic_cast<LTCTensorImpl*>(t.unsafeGetTensorImpl());
TORCH_INTERNAL_ASSERT(
impl,
"GetTensorList only supports lists of valid tensors, but optional support could be added");
values.push_back(impl->tensor()->GetIrValue());
}
return torch::lazy::Value(torch::lazy::MakeTensorList(std::move(values)));
}
LazyTensorPtr TryGetLtcTensor(const at::Tensor& tensor) {
auto* impl = dynamic_cast<LTCTensorImpl*>(
maybe_unwrap_functional(tensor).unsafeGetTensorImpl());
if (impl == nullptr) {
// return c10::make_intrusive<LazyTensor>();
return LazyTensorPtr();
}
return impl->tensor();
}
LazyTensorPtr GetLtcTensor(const at::Tensor& tensor) {
auto lazy_tensor = TryGetLtcTensor(tensor);
CHECK(lazy_tensor) << "Input tensor is not a lazy tensor: "
<< tensor.toString();
return lazy_tensor;
}
std::vector<LazyTensorPtr> GetLtcTensors(c10::ArrayRef<at::Tensor> tensors) {
std::vector<LazyTensorPtr> ltc_tensors;
ltc_tensors.reserve(tensors.size());
for (const auto& tensor : tensors) {
ltc_tensors.push_back(TryGetLtcTensor(tensor));
}
return ltc_tensors;
}
LazyTensorPtr GetOrCreateLtcTensor(
const c10::optional<at::Tensor>& tensor,
const BackendDevice& device) {
return GetOrCreateLtcTensor(tensor.value_or(at::Tensor()), device);
}
LazyTensorPtr GetLtcTensorOrCreateForWrappedNumber(
const at::Tensor& tensor,
const BackendDevice& device) {
// TODO: There are places in core where a scalar is wrapped but not marked as
// wrapped.
return (tensor.unsafeGetTensorImpl()->is_wrapped_number() ||
(tensor.dim() == 0 && tensor.numel() == 1))
? GetOrCreateLtcTensor(tensor, device)
: GetLtcTensor(tensor);
}
at::Tensor CreateAtenFromLtcTensor(const LazyTensorPtr& ltc_tensor) {
return ltc_tensor ? at::Tensor(c10::make_intrusive<LTCTensorImpl>(ltc_tensor))
: at::Tensor();
}
at::Tensor CreateAtenFromLtcTensor(LazyTensor&& ltc_tensor) {
return at::Tensor(c10::make_intrusive<LTCTensorImpl>(std::move(ltc_tensor)));
}
at::Tensor to_lazy_tensor(
const at::Tensor& self,
const c10::TensorOptions& options,
at::Device device,
bool non_blocking,
bool functionalize_output) {
TORCH_INTERNAL_ASSERT(self.device().type() != c10::kLazy);
TORCH_INTERNAL_ASSERT(device.type() == c10::kLazy);
auto eager_tensor =
self.to(options, /*non_blocking=*/non_blocking, /*copy=*/true);
auto lazy_self = torch::lazy::GetOrCreateLtcTensor(
eager_tensor, torch::lazy::atenDeviceToBackendDevice(device));
auto out = torch::lazy::CreateAtenFromLtcTensor(lazy_self);
if (functionalize_output) {
// See Note [Lazy Tensor Functionalization]
return at::functionalization::impl::to_functional_tensor(out);
} else {
return out;
}
}
} // namespace lazy
} // namespace torch
|