1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
#include <torch/csrc/lazy/python/init.h>
#include <ATen/FunctionalTensorWrapper.h>
#include <c10/core/Device.h>
#include <torch/csrc/jit/python/pybind.h>
#include <torch/csrc/lazy/backend/backend_device.h>
#include <torch/csrc/lazy/backend/backend_interface.h>
#include <torch/csrc/lazy/core/config.h>
#include <torch/csrc/lazy/core/debug_util.h>
#include <torch/csrc/lazy/core/internal_ops/ltc_ops.h>
#include <torch/csrc/lazy/core/ir_dump_util.h>
#include <torch/csrc/lazy/core/lazy_graph_executor.h>
#include <torch/csrc/lazy/core/metrics.h>
#include <torch/csrc/lazy/core/trie.h>
#include <torch/csrc/lazy/python/python_util.h>
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
#include <torch/csrc/lazy/ts_backend/ts_backend_impl.h>
#include <torch/csrc/lazy/ts_backend/ts_lowering_context.h>
#endif // FBCODE_CAFFE2 || OVRSOURCE
#include <string>
#include <vector>
namespace torch {
namespace lazy {
// TODO(whc) backend 'device' related APIs are not very clear, this code could
// be simplified but it should probably be done together with
// designing/refactoring the overall approach to get/set of default eager/lazy
// device types
torch::lazy::BackendDevice GetDeviceOrCurrent(const std::string& device_str) {
if (device_str.empty()) {
getBackend()->GetDefaultDeviceType();
return torch::lazy::BackendDevice();
}
return torch::lazy::atenDeviceToBackendDevice(c10::Device(device_str));
}
std::ptrdiff_t GetTensorId(const at::Tensor& tensor) {
torch::lazy::LazyTensorPtr lazy_tensor = torch::lazy::TryGetLtcTensor(tensor);
return lazy_tensor->GetUniqueId();
}
std::string GetTensorsDump(
const std::vector<at::Tensor>& tensors,
const std::function<std::string(c10::ArrayRef<torch::lazy::Node*>)>&
coverter) {
std::vector<torch::lazy::Node*> nodes;
std::vector<torch::lazy::Value> values;
for (auto& tensor : tensors) {
auto inner = at::functionalization::impl::from_functional_tensor(tensor);
torch::lazy::LazyTensorPtr lazy_tensor =
torch::lazy::TryGetLtcTensor(inner);
values.push_back(lazy_tensor->GetIrValue());
nodes.push_back(values.back().node.get());
}
return coverter(nodes);
}
std::vector<torch::lazy::LazyTensorPtr> GetLtcTensors(
const std::vector<at::Tensor>& tensors,
bool want_all) {
std::vector<torch::lazy::LazyTensorPtr> lazy_tensors;
lazy_tensors.reserve(tensors.size());
if (want_all) {
for (auto& tensor : tensors) {
lazy_tensors.push_back(torch::lazy::TryGetLtcTensor(tensor));
}
} else {
for (auto& tensor : tensors) {
auto lazy_tensor = torch::lazy::TryGetLtcTensor(tensor);
if (lazy_tensor) {
lazy_tensors.push_back(lazy_tensor);
}
}
}
return lazy_tensors;
}
std::string GetTensorsBackendGraph(const std::vector<at::Tensor>& tensors) {
std::vector<torch::lazy::LazyTensorPtr> lazy_tensors =
GetLtcTensors(tensors, /*want_all=*/false);
return torch::lazy::LazyGraphExecutor::Get()->DumpBackendComputation(
lazy_tensors);
}
void SyncTensors(
const std::vector<at::Tensor>& tensors,
const std::vector<std::string>& devices,
bool wait,
bool sync_ltc_data) {
std::vector<torch::lazy::LazyTensorPtr> lazy_tensors =
GetLtcTensors(tensors, /*want_all=*/false);
torch::lazy::LazyGraphExecutor::Get()->SyncTensorsGraph(
&lazy_tensors, devices, wait, sync_ltc_data);
}
void initLazyBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
auto lazy = m.def_submodule("_lazy");
auto lazy_ts_backend = m.def_submodule("_lazy_ts_backend");
lazy.def(
"_mark_step",
// TODO(whc) this API should probably change from vector<string> to
// vector<c10::device> but in a separate PR
[](const std::string& device_str,
const std::vector<std::string>& devices,
bool wait) {
pybind11::gil_scoped_release no_gil;
auto backend_device = GetDeviceOrCurrent(device_str);
torch::lazy::LazyGraphExecutor::Get()->SyncLiveTensorsGraph(
&backend_device, devices, wait);
torch::lazy::LazyGraphExecutor::Get()->MarkStep(backend_device);
},
py::arg("device") = "",
py::arg("devices"),
py::arg("wait") = true);
lazy.def(
"_wait_device_ops",
[](const std::vector<std::string>& devices) {
pybind11::gil_scoped_release no_gil;
// TODO: Add support of non-empty devices.
if (!devices.empty()) {
LOG(ERROR) << "Non-empty devices are not supported.";
}
torch::lazy::LazyGraphExecutor::Get()->WaitDeviceOps({});
},
py::arg("devices"));
lazy.def(
"_reset_metrics", []() { torch::lazy::MetricsArena::Get()->Reset(); });
lazy.def("_counter_names", []() { return torch::lazy::GetCounterNames(); });
lazy.def(
"_metrics_report", []() { return torch::lazy::CreateMetricReport(); });
lazy.def("_counter_value", [](const std::string& name) -> py::object {
torch::lazy::CounterData* data = torch::lazy::GetCounter(name);
return data != nullptr ? py::cast<int64_t>(data->Value()) : py::none();
});
lazy.def("_get_tensor_id", [](const at::Tensor& tensor) {
return GetTensorId(tensor);
});
lazy.def(
"_get_tensors_text",
[](const std::vector<at::Tensor>& tensors) -> std::string {
auto coverter = [](c10::ArrayRef<torch::lazy::Node*> nodes) {
return torch::lazy::DumpUtil::ToText(nodes);
};
return GetTensorsDump(tensors, coverter);
});
lazy.def(
"_get_tensors_dot",
[](const std::vector<at::Tensor>& tensors) -> std::string {
auto coverter = [](c10::ArrayRef<torch::lazy::Node*> nodes) {
return torch::lazy::DumpUtil::ToDot(nodes);
};
return GetTensorsDump(tensors, coverter);
});
lazy.def(
"_get_tensors_backend",
[](const std::vector<at::Tensor>& tensors) -> std::string {
return GetTensorsBackendGraph(tensors);
});
lazy.def("_get_graph_hash", [](const std::vector<at::Tensor>& tensors) {
std::vector<LazyTensorPtr> xtensors;
xtensors.reserve(tensors.size());
for (auto& tensor : tensors) {
xtensors.push_back(TryGetLtcTensor(tensor));
}
auto hash = LazyGraphExecutor::Get()->GetGraphHash(xtensors);
std::string bin((const char*)&hash, sizeof(hash));
return py::bytes(bin);
});
lazy.def(
"_sync_multi",
[](const std::vector<at::Tensor>& tensors,
const std::vector<std::string>& devices,
bool wait,
bool sync_ltc_data) {
pybind11::gil_scoped_release no_gil;
SyncTensors(tensors, devices, wait, sync_ltc_data);
},
py::arg("tensors"),
py::arg("devices"),
py::arg("wait") = true,
py::arg("sync_ltc_data") = true);
lazy.def("_get_force_fallback", []() {
return torch::lazy::getLTCForceFallback();
});
lazy.def("_set_force_fallback", [](std::string newval) {
torch::lazy::getLTCForceFallback() = newval;
});
lazy.def("_clear_ir_cache", []() { TrieCache::Get()->Clear(); });
lazy.def("_dump_ir_cache", [](std::string filename) {
TrieCache::Get()->DumpToDotFile(filename);
});
lazy.def("_set_reuse_ir", [](bool val) { FLAGS_torch_lazy_reuse_ir = val; });
lazy.def("_set_symbolic_shape_mode", [](bool val) {
FLAGS_ltc_enable_symbolic_shapes = val;
});
lazy.def("_get_symbolic_shape_mode", []() {
return FLAGS_ltc_enable_symbolic_shapes;
});
lazy.def("_get_default_device_type", []() {
return getBackend()->GetDefaultDeviceType()->toString();
});
lazy_ts_backend.def("_init", []() {
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
torch::lazy::InitTorchScriptBackend();
#else
TORCH_CHECK(false, "TorchScript backend not yet supported in FBCODE/OVRSOURCE builds");
#endif // !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
});
/*
* Return tensor ids and tensors for DeviceData nodes.
* TODO(shunting) revisit this API for XLA
*/
lazy_ts_backend.def(
"_get_tensors_ts_device_data_node",
[](const std::vector<at::Tensor>& tensors)
-> std::pair<std::vector<int64_t>, std::vector<at::IValue>> {
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
std::vector<Node*> roots;
for (auto& tensor : tensors) {
auto xtensor = TryGetLtcTensor(tensor);
roots.push_back(xtensor->GetIrValue().node.get());
}
auto post_order = Util::ComputePostOrder(roots);
std::vector<int64_t> tensor_ids;
std::vector<at::IValue> ivalues;
std::unordered_set<BackendData::Handle> data_handles_;
for (auto nodeptr : post_order) {
if (nodeptr->op() == *torch::lazy::ltc_device_data) {
const auto backend_data =
getBackend()->GetComputationDataFromNode(nodeptr);
auto infoptr = backend_data->info();
auto deviceDataInfoPtr =
(torch::lazy::LazyGraphExecutor::DeviceDataInfo*)infoptr;
auto* tsDataPtr = (torch::lazy::TSData*)backend_data.get();
// dedup DeviceData by handle
auto handle = tsDataPtr->GetHandle();
if (!data_handles_.insert(handle).second) {
continue;
}
tensor_ids.push_back(deviceDataInfoPtr->tensor_id);
/*
* If the TSData contains a tensor, then the tensor id will uniquely
* identify the tensor. We use that tensor id to find the tensor in
* other places: e.g. in the python forward method parameters.
*
* If the TSData contains a scalar, the tensor id itself is not
* important. We reuse the scalar value in future calls.
*/
if (tsDataPtr->HasValue()) {
ivalues.emplace_back(tsDataPtr->data());
} else {
CHECK(tsDataPtr->scalar.has_value());
ivalues.emplace_back(tsDataPtr->scalar.value());
}
}
}
return std::make_pair(tensor_ids, ivalues);
#else
TORCH_CHECK(
false, "TorchScript backend not yet supported in FBCODE builds");
return std::make_pair(
std::vector<int64_t>(), std::vector<at::IValue>());
#endif // !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
});
// TODO(shunting) revisit this part for XLA
lazy_ts_backend.def(
"_run_cached_graph",
[](const std::string& hash_str,
const std::vector<at::IValue>& graph_inputs) {
std::vector<at::Tensor> result;
#if !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
TORCH_CHECK(hash_str.size() == sizeof(hash_t));
hash_t hash = *(hash_t*)(hash_str.c_str());
auto cachedComputation =
LazyGraphExecutor::Get()->GetComputationCache()->Get(hash);
TORCH_CHECK(
cachedComputation,
"Failed to get computation by hash. Maybe the entry get kicked out of the LRU cache"); // TODO implement a fallback mechanism, or make sure those entries never get kicked out
auto computationPtr =
(torch::lazy::TSComputation*)cachedComputation->computation.get();
std::vector<torch::jit::IValue> stack;
stack.reserve(graph_inputs.size());
for (const auto& arg : graph_inputs) {
stack.emplace_back(arg);
}
computationPtr->graph_executor().run(stack);
result.reserve(stack.size());
for (torch::jit::IValue elem : stack) {
result.push_back(elem.toTensor());
}
#else
TORCH_CHECK(
false, "TorchScript backend not yet supported in FBCODE builds");
#endif // !(defined(FBCODE_CAFFE2) || defined(OVRSOURCE))
return result;
});
}
} // namespace lazy
} // namespace torch
|