1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
#include <ATen/FunctionalTensorWrapper.h>
#include <ATen/Functions.h>
#include <ATen/MetaFunctions.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Operators.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/CPUFallback.h>
#include <torch/csrc/lazy/core/helpers.h>
#include <torch/csrc/lazy/core/ir_builder.h>
#include <torch/csrc/lazy/core/metrics.h>
#include <torch/csrc/lazy/core/ops/utils.h>
#include <torch/csrc/lazy/core/shape_inference.h>
#include <torch/csrc/lazy/core/tensor_impl.h>
#include <torch/csrc/lazy/core/tensor_util.h>
#include <torch/csrc/lazy/generated/LazyNativeFunctions.h>
#include <torch/csrc/lazy/ts_backend/config.h>
#include <torch/csrc/lazy/ts_backend/ops/random_ops.h>
#include <torch/csrc/lazy/ts_backend/ops/to_copy.h>
#include <torch/csrc/lazy/ts_backend/tensor_aten_ops.h>
#include <torch/csrc/lazy/ts_backend/ts_autograd_functions.h>
#include <torch/csrc/lazy/ts_backend/ts_eager_fallback.h>
#include <torch/library.h>
using at::Tensor;
namespace torch {
namespace lazy {
namespace {
at::Tensor CreateLtcTensor(
const at::Tensor& tensor,
const c10::optional<torch::lazy::BackendDevice>& device) {
if (tensor.defined() && device) {
return torch::lazy::CreateAtenFromLtcTensor(
torch::lazy::LazyTensor::Create(tensor, *device));
}
return tensor;
}
c10::optional<torch::lazy::BackendDevice> GetLtcDevice(
const c10::optional<c10::Device>& device) {
if (!device) {
return c10::nullopt;
}
if (device->type() != at::kLazy) {
return c10::nullopt;
}
return torch::lazy::atenDeviceToBackendDevice(*device);
}
} // namespace
// clone is special in LT because we make it a no-op.
// This should be safe to do, because every operator in the LT is functional.
at::Tensor LazyNativeFunctions::clone(
const at::Tensor& self,
c10::optional<at::MemoryFormat> memory_format) {
auto self_lt = torch::lazy::TryGetLtcTensor(self);
return torch::lazy::CreateAtenFromLtcTensor(
self_lt->Create(self_lt->GetIrValue(), self_lt->GetDevice()));
}
at::Tensor LazyNativeFunctions::_copy_from(
const at::Tensor& self,
const at::Tensor& dst,
bool non_blocking) {
TORCH_LAZY_FN_COUNTER("lazy::");
auto dst_tensor = torch::lazy::TryGetLtcTensor(dst);
auto self_tensor = torch::lazy::TryGetLtcTensor(self);
if (!self_tensor) {
// providing a new 'eager' value (self) for an existing lazy tensor (dst)
static bool sync_update = FLAGS_torch_lazy_ts_tensor_update_sync;
CHECK(dst_tensor);
dst_tensor->UpdateFromTensor(self, /*sync=*/sync_update);
} else if (!dst_tensor) {
// materializing a lazy tensor (self) and copying its value into eager
// tensor (dst) detached=false lets us skip a copy in `ToTensor`, which
// should be safe because we are only going to use the tensor for
// dst.copy_()
CHECK(self_tensor);
at::Tensor tensor = self_tensor->ToTensor(/*detached=*/false);
at::Tensor typed_tensor =
torch::lazy::CopyTensor(tensor, dst.scalar_type(), /*copy=*/false);
dst.resize_as_(typed_tensor).copy_(typed_tensor);
} else {
// Copying one lazy tensor to another
if (!dst_tensor->CurrentIrValue()) {
// if dest is not backed by IR (e.g. result of some lazy operation),
// then it should have at::Tensor data backing it instead
auto dst_tensor_data = dst_tensor->CurrentTensorData();
CHECK(dst_tensor_data);
auto src_tensor_data = self_tensor->CurrentTensorData();
if (src_tensor_data) {
// both src/dst are simply backed by at::Tensor data, no IR- do a
// straightforward copy
dst_tensor_data->copy_(*src_tensor_data);
} else {
// src needs to be materialized before its result can be used for a copy
// into dst since we use the src tensor only for making a copy, we don't
// need to detach it note: it would be even more efficient if we could
// cause ToTensor to materialize the value directly into dst's buffer
// (that would need to be detached though).
dst_tensor_data->copy_(self_tensor->ToTensor(/*detached=*/false));
}
} else {
copy_(dst_tensor, self_tensor);
auto* impl =
dynamic_cast<torch::lazy::LTCTensorImpl*>(dst.unsafeGetTensorImpl());
impl->set_tensor(dst_tensor);
}
}
return dst;
}
at::Tensor LazyNativeFunctions::_copy_from_and_resize(
const at::Tensor& self,
const at::Tensor& dst) {
TORCH_LAZY_FN_COUNTER("lazy::");
auto dst_tensor = torch::lazy::TryGetLtcTensor(dst);
auto self_tensor = torch::lazy::TryGetLtcTensor(self);
if (!self_tensor) {
CHECK(dst_tensor);
dst_tensor->UpdateFromTensorOut(self);
} else if (!dst_tensor) {
CHECK(self_tensor);
at::Tensor tensor = self_tensor->ToTensor(/*detached=*/true);
at::Tensor typed_tensor =
torch::lazy::CopyTensor(tensor, dst.scalar_type(), /*copy=*/false);
dst.resize_as_(typed_tensor).copy_(typed_tensor);
} else {
// at this point we know dst is a lazy tensor
auto* dest_impl =
dynamic_cast<torch::lazy::LTCTensorImpl*>(dst.unsafeGetTensorImpl());
dest_impl->tensor()->UpdateFromTensorOut(self_tensor);
dest_impl->force_refresh_sizes();
}
return dst;
}
at::Tensor LazyNativeFunctions::_to_copy(
const at::Tensor& self,
c10::optional<at::ScalarType> dtype,
c10::optional<at::Layout> layout,
c10::optional<at::Device> device,
c10::optional<bool> pin_memory,
bool non_blocking,
c10::optional<at::MemoryFormat> memory_format) {
if (force_eager_fallback(at::aten::_to_copy)) {
TORCH_INTERNAL_ASSERT(
false,
"Fallback is currently impossible for _to_copy since the fallback helper itself reinvokes _to_copy");
}
auto options = self.options();
if (dtype) {
// I put each of these setters in a conditional instead of doing
// `self.options().dtype(dtype).layout(layout)... because calling
// .dtype(nullopt) on an options() that already has dtype appears to wipe it
options = options.dtype(dtype);
}
if (layout) {
options = options.layout(layout);
}
if (memory_format) {
options = options.memory_format(memory_format);
}
if (pin_memory) {
// TODO(whc) can we honor 'pin_memory' in some/all cases?
options = options.pinned_memory(pin_memory);
TORCH_WARN_ONCE(
"Pinned memory used in lazy _to_copy, check if the behavior is as intended");
}
TORCH_LAZY_FN_COUNTER("lazy::");
auto lazy_self = torch::lazy::TryGetLtcTensor(self);
if (!lazy_self && device && device->type() == c10::kLazy) {
// Case 1: eager->lazy (we create a new lazy tensor)
// See Note [Lazy Tensor Functionalization]
// Invariant: if the functionalization key is in the exclude set, then we're
// expected to return an ordinary tensor, which will be "lifted" into a
// functional wrapper later.
bool functionalize_output =
!c10::impl::tls_local_dispatch_key_set().excluded_.has(
c10::DispatchKey::Functionalize);
return torch::lazy::to_lazy_tensor(
self,
options,
*device,
/*non_blocking=*/non_blocking,
/*functionalize_output=*/functionalize_output);
} else if (device && device->type() != c10::kLazy) {
// Case 2: lazy->eager (forces a graph break since we are materializing a
// tensor)
TORCH_INTERNAL_ASSERT(lazy_self);
auto eager_tensor = lazy_self->ToTensor(/*detached=*/true);
options = options.device(device);
auto moved_eager_tensor =
eager_tensor.to(options, /*non_blocking=*/non_blocking, /*copy=*/true);
return moved_eager_tensor;
} else if (
device && device->type() == c10::kLazy && device->has_index() &&
device->index() != self.device().index()) {
// Case 3: lazy:0 -> lazy:1
// TODO(whc) what do we actually want to do here?
// option 1: materialize, move eager tensor, create new lazy tensor
// - this should be our default, as it is what would happen before we
// implemented _to_copy
// - actually combines case 1 + case 2
// option 2: support multiple devices inside one lazy/TS executor (case 4)
// - but: we may have other assumptions that there is just one device
// per executor? so don't take this lightly
TORCH_INTERNAL_ASSERT(lazy_self);
auto eager_tensor = lazy_self->ToTensor(/*detached=*/true);
// we move the eager tensor to the 'eager' equivalent of our lazy device
// e.g. if our device is lazy:1, the backend maps that to cuda:1, which is
// what we use
auto eager_device = c10::Device(
torch::lazy::getBackend()->EagerFallbackDeviceType(), device->index());
options = options.device(eager_device);
auto moved_eager_tensor =
eager_tensor.to(options, /*non_blocking=*/false, /*copy=*/true);
lazy_self = torch::lazy::GetOrCreateLtcTensor(
moved_eager_tensor,
torch::lazy::atenDeviceToBackendDevice(eager_device));
return torch::lazy::CreateAtenFromLtcTensor(lazy_self);
} else {
// Case 4: lazy->lazy (special case: keep the _to_copy INSIDE the lazy
// graph)
// Note: captured _to_copy will be executed with real eager tensors, not
// lazy tensors. We DO NOT want to burn 'lazy:0' as the device into this
// captured IR, or we will try to convert an eager tensor back to a lazy one
// inside the torchscript executor lazy:0 -> lazy:1 is handled in case3, so
// we can safely drop the device argument
device = c10::nullopt;
torch::lazy::NodePtr node = torch::lazy::ReuseNode<ToCopy>(
lazy_self->GetIrValue(),
dtype,
layout,
device,
pin_memory,
non_blocking,
memory_format);
if (!node) {
auto shapes = torch::lazy::compute_shape__to_copy(
self, dtype, layout, device, pin_memory, non_blocking, memory_format);
TORCH_INTERNAL_ASSERT(shapes.size() == 1);
node = torch::lazy::MakeNode<ToCopy>(
lazy_self->GetIrValue(),
dtype,
layout,
device,
pin_memory,
non_blocking,
memory_format,
std::move(shapes));
CacheNode(node);
}
auto result =
torch::lazy::CreateAtenFromLtcTensor(torch::lazy::LazyTensor::Create(
std::move(node), lazy_self->GetDevice()));
return result;
}
};
at::Tensor LazyNativeFunctions::empty_symint(
at::SymIntArrayRef sym_size,
c10::optional<at::ScalarType> dtype,
c10::optional<at::Layout> layout,
c10::optional<at::Device> device,
c10::optional<bool> pin_memory,
c10::optional<at::MemoryFormat> memory_format) {
// TODO: support this directly
auto size = c10::asIntArrayRefSlow(sym_size);
const auto device_type = torch::lazy::getBackend()->EagerFallbackDeviceType();
at::TensorOptions options = at::TensorOptions()
.device(c10::Device(device_type))
.layout(layout)
.pinned_memory(pin_memory)
.dtype(dtype);
auto x_result = at::empty(size, options, memory_format);
auto tensor = CreateLtcTensor(x_result, GetLtcDevice(device));
// See Note [Lazy Tensor Functionalization]
if (c10::impl::tls_local_dispatch_key_set().excluded_.has(
c10::DispatchKey::Functionalize)) {
// Invariant: if the functionalization key is in the exclude set, then we're
// expected to return an ordinary tensor, which will be "lifted" into a
// functional wrapper later.
return tensor;
} else {
auto wrapped = at::functionalization::impl::to_functional_tensor(tensor);
return wrapped;
}
}
at::Tensor LazyNativeFunctions::empty_strided_symint(
at::SymIntArrayRef sym_size,
at::SymIntArrayRef sym_stride,
c10::optional<at::ScalarType> dtype,
c10::optional<at::Layout> layout,
c10::optional<at::Device> device,
c10::optional<bool> pin_memory) {
TORCH_LAZY_FN_COUNTER("lazy::");
at::Tensor t =
empty_symint(sym_size, dtype, layout, device, pin_memory, c10::nullopt);
auto size = c10::asIntArrayRefSlow(sym_size);
auto stride = c10::asIntArrayRefSlow(sym_stride);
return t.as_strided(size, stride, /*storage_offset=*/0);
}
at::Tensor& LazyNativeFunctions::fill_(
at::Tensor& self,
const at::Scalar& value) {
TORCH_LAZY_FN_COUNTER("lazy::");
auto self_tensor = torch::lazy::TryGetLtcTensor(self);
torch::lazy::fill_(self_tensor, value);
return self;
}
at::Tensor LazyNativeFunctions::max_pool3d(
const at::Tensor& self,
at::IntArrayRef kernel_size,
at::IntArrayRef stride,
at::IntArrayRef padding,
at::IntArrayRef dilation,
bool ceil_mode) {
return torch::lazy::MaxPool3dAutogradFunctionTS::apply(
self, kernel_size, stride, padding, dilation, ceil_mode);
}
// We need to explicitly override max pooling operators and just call the
// fallback for them because we've customized the autograd function for them
// (backward needs saved indices from forward).
std::tuple<at::Tensor, at::Tensor> LazyNativeFunctions::max_pool3d_with_indices(
const at::Tensor& self,
at::IntArrayRef kernel_size,
at::IntArrayRef stride,
at::IntArrayRef padding,
at::IntArrayRef dilation,
bool ceil_mode) {
return at::native::
call_fallback_fn<<c_eager_fallback, ATEN_OP(max_pool3d_with_indices)>::
call(self, kernel_size, stride, padding, dilation, ceil_mode);
}
at::Tensor LazyNativeFunctions::max_pool3d_with_indices_backward(
const at::Tensor& grad_output,
const at::Tensor& self,
at::IntArrayRef kernel_size,
at::IntArrayRef stride,
at::IntArrayRef padding,
at::IntArrayRef dilation,
bool ceil_mode,
const at::Tensor& indices) {
return at::native::call_fallback_fn<
<c_eager_fallback,
ATEN_OP(max_pool3d_with_indices_backward)>::
call(
grad_output,
self,
kernel_size,
stride,
padding,
dilation,
ceil_mode,
indices);
}
at::Tensor& LazyNativeFunctions::normal_(
at::Tensor& self,
double mean,
double std,
c10::optional<at::Generator> generator) {
// Unconditionally fall back.
// implementing normal_ via lazy tensor caused differences in results compared
// to eager.
return at::native::call_fallback_fn<<c_eager_fallback, ATEN_OP(normal_)>::
call(self, mean, std, generator);
// if (force_eager_fallback(c10::Symbol::fromQualString("aten::normal_"))) {
// return at::native::call_fallback_fn<<c_eager_fallback,
// ATEN_OP(normal_)>::call(self, mean, std, generator);
// }
// if (generator.has_value()) {
// return at::native::call_fallback_fn<<c_eager_fallback,
// ATEN_OP(normal_)>::call(self, mean, std, generator);
// }
// TORCH_LAZY_FN_COUNTER("lazy::");
// auto device = bridge::GetBackendDevice(self);
// LazyTensor lazy_self = GetLtcTensorOrCreateForWrappedNumber(self, *device);
// std::vector<torch::lazy::Shape> shapes =
// {torch::lazy::Shape(self.scalar_type(), self.sizes().vec())}; auto node =
// torch::lazy::MakeNode<Normal>(lazy_self.GetIrValue(), mean, std,
// std::move(shapes)); lazy_self.SetInPlaceIrValue(node); return self;
};
at::Tensor LazyNativeFunctions::_unsafe_view(
const at::Tensor& self,
at::IntArrayRef size) {
TORCH_LAZY_FN_COUNTER("lazy::");
return LazyNativeFunctions::view_copy_symint(
self, c10::fromIntArrayRef(size));
}
// This is needed by the torch.tensor constructor.
// LazyTensor always opts into functionalization.
// "lifting" a tensor for functionalization means wrapping it in a
// FunctionalTensorWrapper object.
at::Tensor LazyNativeFunctions::lift(const at::Tensor& tensor) {
TORCH_INTERNAL_ASSERT(
!at::functionalization::impl::isFunctionalTensor(tensor));
return at::functionalization::impl::to_functional_tensor(tensor);
}
at::Tensor LazyNativeFunctions::lift_fresh(const at::Tensor& tensor) {
TORCH_INTERNAL_ASSERT(
!at::functionalization::impl::isFunctionalTensor(tensor));
return at::functionalization::impl::to_functional_tensor(tensor);
}
// All of the below ops correspond to CompositeExplicitAutograd kernels from
// core that call into view operators internally. These are all composite ops
// that LTC can technically re-use / get for free, but we need to
// "functionalize" them to remove the view ops before we can use them.
at::Tensor LazyNativeFunctions::block_diag(at::TensorList tensors) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
block_diag)>::call(tensors);
}
at::Tensor LazyNativeFunctions::new_empty_strided_symint(
const at::Tensor& self,
c10::SymIntArrayRef size,
c10::SymIntArrayRef stride,
c10::optional<at::ScalarType> dtype,
c10::optional<at::Layout> layout,
c10::optional<at::Device> device,
c10::optional<bool> pin_memory) {
return at::functionalization::
functionalize_aten_op_symint<ATEN_OP(new_empty_strided)>::call(
self, size, stride, dtype, layout, device, pin_memory);
}
at::Tensor LazyNativeFunctions::narrow_copy_symint(
const at::Tensor& self,
int64_t dim,
c10::SymInt start,
c10::SymInt length) {
return at::functionalization::functionalize_aten_op_symint<ATEN_OP(
narrow_copy)>::call(self, dim, start, length);
}
at::Tensor LazyNativeFunctions::pixel_shuffle(
const at::Tensor& self,
int64_t upscale_factor) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
pixel_shuffle)>::call(self, upscale_factor);
}
at::Tensor LazyNativeFunctions::pixel_unshuffle(
const at::Tensor& self,
int64_t downscale_factor) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
pixel_unshuffle)>::call(self, downscale_factor);
}
at::Tensor LazyNativeFunctions::select_backward_symint(
const at::Tensor& grad_output,
c10::SymIntArrayRef input_sizes,
int64_t dim,
int64_t index) {
return at::functionalization::functionalize_aten_op_symint<ATEN_OP(
select_backward)>::call(grad_output, input_sizes, dim, index);
}
at::Tensor LazyNativeFunctions::_trilinear(
const at::Tensor& i1,
const at::Tensor& i2,
const at::Tensor& i3,
at::IntArrayRef expand1,
at::IntArrayRef expand2,
at::IntArrayRef expand3,
at::IntArrayRef sumdim,
int64_t unroll_dim) {
return at::functionalization::functionalize_aten_op<ATEN_OP(_trilinear)>::
call(i1, i2, i3, expand1, expand2, expand3, sumdim, unroll_dim);
}
at::Tensor LazyNativeFunctions::linalg_pinv(
const at::Tensor& self,
const c10::optional<at::Tensor>& atol,
const c10::optional<at::Tensor>& rtol,
bool hermitian) {
return at::functionalization::functionalize_aten_op<ATEN_OP2(
linalg_pinv, atol_rtol_tensor)>::call(self, atol, rtol, hermitian);
}
// functionalize_aten_op can't handle out= ops directly.
// Instead, we can call the composite kernel from core, and copy and mutations
// back to the inputs.
at::Tensor& LazyNativeFunctions::logsumexp_out(
const at::Tensor& self,
at::IntArrayRef dim,
bool keepdim,
at::Tensor& out) {
auto self_wrapped = at::functionalization::impl::to_functional_tensor(self);
auto out_wrapped = at::functionalization::impl::to_functional_tensor(out);
// directly call the composite kernel from core.
// Make sure to re-enable functionalization first.
auto curr_tls = c10::impl::tls_local_dispatch_key_set();
auto tls_reenable_functionalize = c10::impl::PODLocalDispatchKeySet();
tls_reenable_functionalize.set_included(curr_tls.included_);
tls_reenable_functionalize.set_excluded(
curr_tls.excluded_.remove(c10::DispatchKey::Functionalize));
c10::impl::ForceDispatchKeyGuard guard_(tls_reenable_functionalize);
at::native::logsumexp_out(self_wrapped, dim, keepdim, out_wrapped);
auto out_unwrapped =
at::functionalization::impl::from_functional_tensor(out_wrapped);
// propagate mutations back to the inputs (including resizing)
out.resize_(out_unwrapped.sizes());
out.copy_(out_unwrapped);
return out;
}
at::Tensor LazyNativeFunctions::diagonal_backward_symint(
const at::Tensor& grad_output,
at::SymIntArrayRef input_sizes,
int64_t offset,
int64_t dim1,
int64_t dim2) {
return at::functionalization::functionalize_aten_op_symint<ATEN_OP(
diagonal_backward)>::call(grad_output, input_sizes, offset, dim1, dim2);
}
at::Tensor LazyNativeFunctions::slice_backward_symint(
const at::Tensor& grad_output,
at::SymIntArrayRef input_sizes,
int64_t dim,
c10::SymInt start,
c10::SymInt end,
c10::SymInt step) {
return at::functionalization::functionalize_aten_op_symint<ATEN_OP(
slice_backward)>::call(grad_output, input_sizes, dim, start, end, step);
}
// re-use the composite kernel from core, that way we don't need to provide a
// backwards formula for native_group_norm
std::tuple<Tensor, Tensor, Tensor> LazyNativeFunctions::native_group_norm(
const at::Tensor& input,
const c10::optional<at::Tensor>& weight,
const c10::optional<at::Tensor>& bias,
int64_t N,
int64_t C,
int64_t HxW,
int64_t group,
double eps) {
return at::native::math_group_norm(
input, weight, bias, N, C, HxW, group, eps);
}
void InitializeAtenBindings() {}
} // namespace lazy
} // namespace torch
|