1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
#pragma once
#include <cstdint>
#include <memory>
#include <mutex>
#include <type_traits>
#include <utility>
#include <ATen/Context.h>
#include <c10/core/Device.h>
#include <c10/core/TensorImpl.h>
#include <c10/macros/Macros.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/strong_type.h>
#include <c10/util/variant.h>
#include <torch/csrc/profiler/containers.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/profiler/orchestration/python_tracer.h>
#include <torch/csrc/profiler/util.h>
#include <torch/csrc/utils/python_stub.h>
namespace torch {
namespace profiler {
namespace impl {
enum class EventType : uint8_t {
TorchOp = 0,
Backend,
Allocation,
OutOfMemory,
PyCall,
PyCCall,
Kineto
};
// ============================================================================
// == Value (Tensor, Scalar) summary ==========================================
// ============================================================================
// We use a Tensor's TensorImpl adress and StorageImpl data start to build the
// data flow graph. We do not hold a reference so we wrap them in strong types
// to prevent direct access.
using TensorImplAddress = strong::type<
const c10::TensorImpl*,
struct TensorImplAddress_,
strong::regular,
strong::hashable,
strong::boolean>;
using StorageImplData = strong::type<
void*,
struct StorageImplData_,
strong::regular,
strong::hashable,
strong::boolean>;
// Identity is a complex concept in PyTorch. A Tensor might not have a
// an associated storage, multiple Tensors might share the same underlying
// storage, the storage of a Tensor might change over time, etc.
//
// For the purpose of profiling we're mostly interested in data flow
// analysis. As a result, we can take an expansive view of identity:
// Tensors share an ID if they share a TensorImpl or storage data.
//
// This identity equality is transitive; If Tensors T0 and T1 share a storage
// S0 and T1 later points to a different storage S1 then all Tensors which
// point to either S0 or S1 are considered to have the same identity. (Since
// profiler cannot reason beyond that.)
//
// The profiler will handle lifetime analysis to ensure that identities do
// not run afoul of the ABA problem. This does, however, mean that identities
// can only be assigned when memory profiling is enabled. (And we cannot
// handle ABA for TensorImpl as those allocations are not instrumented.)
using TensorID = strong::type<size_t, struct TensorID_, strong::regular>;
struct RawTensorMetadata {
TensorImplAddress impl_;
StorageImplData data_;
// Device is separated into DeviceType and DeviceIndex as Device
// doesn't have a default initializer (which the std::array initializer needs)
c10::DeviceType device_type_;
c10::DeviceIndex device_index_;
c10::ScalarType dtype_;
c10::Layout layout_;
uint32_t dim_;
};
struct TensorMetadata : public RawTensorMetadata {
explicit TensorMetadata(const RawTensorMetadata& m) : RawTensorMetadata(m) {}
c10::Device device() const {
return {device_type_, device_index_};
}
c10::optional<TensorID> id_;
};
struct Inputs {
std::vector<std::vector<int64_t>> shapes_;
std::vector<std::vector<int64_t>> strides_;
std::vector<c10::IValue> ivalues_;
std::vector<std::string> dtypes_;
std::vector<c10::optional<TensorMetadata>> tensor_metadata_;
};
// ============================================================================
// == ExtraFields =============================================================
// ============================================================================
template <EventType>
struct ExtraFields;
struct Result;
struct TorchOpBasicFields {
int64_t sequence_number_;
uint64_t forward_tid_;
at::RecordScope scope_;
bool is_async_;
int64_t debug_handle_;
std::string name_;
// Set in the exit callback.
uint64_t end_tid_{0};
};
using jit_stack_t = std::vector<std::string>;
using jit_modules_t = std::vector<std::string>;
using extra_args_t = std::unordered_map<std::string, c10::IValue>;
struct FallbackPair {
ProfilerEventStub cuda_event_start_ = nullptr;
ProfilerEventStub cuda_event_end_ = nullptr;
};
template <>
struct ExtraFields<EventType::TorchOp> : TorchOpBasicFields {
ExtraFields(
TorchOpBasicFields&& f,
uint64_t correlation_id,
time_t end_time_ns,
Inputs&& inputs,
jit_stack_t&& jit_stack,
jit_modules_t&& jit_modules,
extra_args_t&& extra_args,
FallbackPair&& gpu_fallback,
bool allow_tf32_cublas)
: TorchOpBasicFields(std::move(f)),
correlation_id_{correlation_id},
end_time_ns_{end_time_ns},
inputs_{std::move(inputs)},
jit_stack_{std::move(jit_stack)},
jit_modules_{std::move(jit_modules)},
extra_args_{std::move(extra_args)},
gpu_fallback_{std::move(gpu_fallback)},
allow_tf32_cublas_{allow_tf32_cublas} {}
uint64_t correlation_id_;
time_t end_time_ns_;
Inputs inputs_;
jit_stack_t jit_stack_;
jit_modules_t jit_modules_;
extra_args_t extra_args_;
FallbackPair gpu_fallback_;
bool allow_tf32_cublas_;
};
template <>
struct ExtraFields<EventType::Backend> {
int64_t start_time_us_;
int64_t end_time_us_;
int64_t debug_handle_;
at::RecordScope scope_;
std::string name_;
std::string backend_;
jit_stack_t jit_stack_;
jit_modules_t jit_modules_;
};
struct RawAllocation {
torch::profiler::impl::approx_time_t start_time_;
void* ptr_;
int64_t alloc_size_;
int64_t total_allocated_;
int64_t total_reserved_;
c10::DeviceType device_type_;
c10::DeviceIndex device_index_;
};
// For performance.
static_assert(
std::is_pod<RawAllocation>::value,
"Non-POD member of RawAllocation.");
template <>
struct ExtraFields<EventType::Allocation> : RawAllocation {
ExtraFields(const RawAllocation& allocation) : RawAllocation(allocation) {}
c10::Device device() const {
return {device_type_, device_index_};
}
c10::optional<TensorID> id_;
};
template <>
struct ExtraFields<EventType::OutOfMemory> {
torch::profiler::impl::approx_time_t start_time_;
int64_t alloc_size_;
int64_t total_allocated_;
int64_t total_reserved_;
c10::DeviceType device_type_;
c10::DeviceIndex device_index_;
};
// For performance.
static_assert(
std::is_pod<ExtraFields<EventType::OutOfMemory>>::value,
"Non-POD member of ExtraFields<EventType::OutOfMemory>.");
struct PyFrameState {
int line_no_;
at::StringView filename_;
at::StringView funcname_;
};
template <typename T, typename Tag>
using strong_t = strong::
type<T, Tag, strong::regular, strong::convertible_to<T>, strong::hashable>;
using PyModuleSelf = strong_t<PyObject*, struct PyModuleSelf_>;
using PyModuleCls = strong_t<PyObject*, struct PyModuleCls_>;
using PyMethod = strong_t</*PyMethodDef*/ void*, struct PyMethod_>;
using PyOptimizerSelf = strong_t<PyObject*, struct PyOptSelf_>;
using PyOptimizerCls = strong_t<PyObject*, struct PyOptimizer_>;
struct NNModuleInfo {
PyModuleSelf self_;
PyModuleCls cls_;
at::StringView cls_name_;
std::vector<std::pair<std::string, void*>> params_;
// Indicates that `self_` is the kth instance of `cls_` observed.
size_t id_{std::numeric_limits<size_t>::max()};
};
struct OptimizerInfo {
PyOptimizerSelf self_;
PyOptimizerCls opt_;
at::StringView opt_name_;
std::vector<void*> params_addr_;
std::vector<std::pair<std::string, void*>> opt_state_;
};
struct PyExtraFieldsBase {
PyExtraFieldsBase(time_t end_time_ns, size_t python_tid, PyFrameState caller)
: end_time_ns_{end_time_ns}, python_tid_{python_tid}, caller_{caller} {}
time_t end_time_ns_;
size_t python_tid_;
PyFrameState caller_;
// kth python event observed. (Used by TensorBoard)
size_t id_{std::numeric_limits<size_t>::max()};
};
template <>
struct ExtraFields<EventType::PyCall> : public PyExtraFieldsBase {
using args_t = struct {
PyFrameState frame_state_;
c10::optional<NNModuleInfo> module_info_;
c10::optional<OptimizerInfo> opt_info_;
};
ExtraFields(
time_t end_time_ns,
size_t python_tid,
PyFrameState caller,
args_t args)
: PyExtraFieldsBase(end_time_ns, python_tid, caller),
callsite_{args.frame_state_},
module_{args.module_info_},
opt_{args.opt_info_} {}
PyFrameState callsite_;
c10::optional<NNModuleInfo> module_;
c10::optional<OptimizerInfo> opt_;
};
template <>
struct ExtraFields<EventType::PyCCall> : public PyExtraFieldsBase {
using args_t = at::StringView;
ExtraFields(
time_t end_time_ns,
size_t python_tid,
PyFrameState caller,
args_t args)
: PyExtraFieldsBase(end_time_ns, python_tid, caller),
function_name_{args} {}
at::StringView function_name_;
};
template <>
struct ExtraFields<EventType::Kineto> {
// Mirrors `libkineto::GenericTraceActivity::Flow`. This information is used
// during post processing to properly embed Kineto events into the broader
// profiler tree structure. End users are not generally expected to use these
// fields directly, but they are available for debugging.
struct Flow {
uint32_t id{0};
uint32_t type{0};
uint32_t start{0};
};
std::string name_;
int64_t duration_us_;
uint64_t correlation_id_;
libkineto::ActivityType activity_type_;
Flow flow;
std::weak_ptr<Result> linked_activity_{};
};
struct TORCH_API Result : public std::enable_shared_from_this<Result> {
template <typename... Args>
[[nodiscard]] static std::shared_ptr<Result> create(Args... args) {
return std::shared_ptr<Result>(new Result(std::forward<Args>(args)...));
}
template <typename T>
decltype(auto) visit(T&& visitor) {
return c10::visit(std::forward<T>(visitor), extra_fields_);
}
template <typename T>
decltype(auto) visit(T&& visitor) const {
return c10::visit(std::forward<T>(visitor), extra_fields_);
}
template <typename T, typename Fn>
void visit_if_base(Fn&& fn) const {
visit([&](const auto& extra_fields) {
using extra_fields_t = typename std::remove_cv<
typename std::remove_reference<decltype(extra_fields)>::type>::type;
c10::guts::if_constexpr<std::is_base_of<T, extra_fields_t>::value>(
[&](auto _) { fn(_(extra_fields)); });
});
}
EventType tag() const {
return visit([](const auto& i) { return deduceTag(i); });
}
std::string name() const;
libkineto::ActivityType kinetoType() const;
uint64_t correlationID() const;
int64_t endTimeNS() const;
uint64_t endTID() const;
c10::DeviceType deviceType() const;
int64_t start_time_ns_;
uint64_t start_tid_;
kineto::DeviceAndResource kineto_info_;
c10::variant<
ExtraFields<EventType::TorchOp>,
ExtraFields<EventType::Backend>,
ExtraFields<EventType::Allocation>,
ExtraFields<EventType::OutOfMemory>,
ExtraFields<EventType::PyCall>,
ExtraFields<EventType::PyCCall>,
ExtraFields<EventType::Kineto>>
extra_fields_;
std::weak_ptr<Result> parent_;
std::vector<std::shared_ptr<Result>> children_;
bool finished_{false};
const torch::profiler::impl::kineto::activity_t* kineto_activity_{nullptr};
private:
template <EventType E>
Result(
int64_t start_time_ns,
uint64_t start_tid,
kineto::DeviceAndResource kineto_info,
ExtraFields<E>&& extra_fields)
: start_time_ns_{start_time_ns},
start_tid_{start_tid},
kineto_info_{kineto_info},
extra_fields_{std::move(extra_fields)} {}
template <EventType E>
static EventType deduceTag(const ExtraFields<E>&) {
return E;
}
};
struct KinetoObserverContext : public at::ObserverContext {
struct Event {
TorchOpBasicFields basic_fields_;
approx_time_t start_time_;
// Set in the exit callback.
approx_time_t end_time_{std::numeric_limits<approx_time_t>::min()};
bool allow_tf32_cublas_;
};
explicit KinetoObserverContext(Event* event) : event_{event} {}
Event* event_;
FallbackPair* fallback_{nullptr};
};
constexpr int IO_ENCODER_DEFAULT_BLOCK_SIZE = 1024;
// InputOutputEncoder
// Stores each op_events' shapes and dtypes into a contiguous AppendOnlyList
// so that we no longer create vectors for shapes and dtypes on every op.
// Those vectors can be created during post-processing.
class InputOutputEncoder final {
public:
void push(c10::ArrayRef<const c10::IValue> values);
// Used during post-processing to create vectors for shapes and dtype.
auto getNextShapesAndDtypes();
void clear();
private:
enum class Tag {
Tensor = 0,
UndefinedTensor,
TensorListBegin, // TODO: generalize to other lists.
Scalar,
Other,
TERMINATOR
};
void push(const at::Tensor& t);
AppendOnlyList<Tag, IO_ENCODER_DEFAULT_BLOCK_SIZE> tags_;
AppendOnlyList<RawTensorMetadata, IO_ENCODER_DEFAULT_BLOCK_SIZE>
tensor_metadata_;
AppendOnlyList<int64_t, IO_ENCODER_DEFAULT_BLOCK_SIZE> tensor_sizes_strides_;
AppendOnlyList<c10::IValue, IO_ENCODER_DEFAULT_BLOCK_SIZE> ivalues_;
};
class TORCH_API ThreadLocalSubqueue {
public:
ThreadLocalSubqueue(const uint64_t tid, const ProfilerConfig& config);
std::unique_ptr<KinetoObserverContext> begin_op(const at::RecordFunction& fn);
template <class... Args>
void emplace_backend_event(Args&&... args) {
backend_events_.emplace_back(std::forward<Args>(args)...);
}
template <class... Args>
void emplace_allocation_event(Args&&... args) {
allocations_.emplace_back(std::forward<Args>(args)...);
}
template <class... Args>
void emplace_ooms_event(Args&&... args) {
ooms_.emplace_back(std::forward<Args>(args)...);
}
template <class... Args>
void emplace_py_call(Args&&... args) {
py_calls_.emplace_back(std::forward<Args>(args)...);
}
uint64_t tid() const {
return tid_;
}
const kineto::DeviceAndResource& kineto_info() const {
return kineto_info_;
}
private:
uint64_t tid_;
ProfilerConfig config_;
kineto::DeviceAndResource kineto_info_;
friend class RecordQueue;
// See `containers.h` for block size benchmarks.
static constexpr size_t BlockSize = 512;
struct TorchOpStorage {
// NB: This is a destructive operation.
void materialize(
std::vector<std::shared_ptr<Result>>& out,
const std::function<time_t(approx_time_t)> time_converter,
const uint64_t tid,
const kineto::DeviceAndResource& kineto_info);
template <typename T, size_t ChunkSize>
class EventBlock : public std::array<T, ChunkSize> {
public:
EventBlock();
uint64_t correlation_id(const T* ptr) const;
private:
uint64_t id_start_;
};
using event_t = KinetoObserverContext::Event;
class OpList : public AppendOnlyList<event_t, BlockSize, EventBlock> {
public:
template <class... Args>
std::pair<event_t*, uint64_t> emplace_back(Args&&... args);
static uint64_t correlationID(const OpList::Iterator& e);
} op_events_;
// report_input_shapes
InputOutputEncoder inputs_outputs_;
// with_stack (JIT)
AppendOnlyList<jit_stack_t, BlockSize> jit_stack_;
// with_modules
AppendOnlyList<jit_modules_t, BlockSize> jit_modules_;
// with_flops
AppendOnlyList<extra_args_t, BlockSize> extra_args_;
// ProfilerState::KINETO_GPU_FALLBACK
AppendOnlyList<FallbackPair, BlockSize> gpu_fallback_;
} torch_ops_;
// reportBackendEventToActiveKinetoProfiler
AppendOnlyList<ExtraFields<EventType::Backend>, BlockSize> backend_events_;
// reportMemoryUsage
AppendOnlyList<RawAllocation, BlockSize> allocations_;
// reportOOMs
AppendOnlyList<ExtraFields<EventType::OutOfMemory>, BlockSize> ooms_;
// with_stack (Python)
AppendOnlyList<std::pair<python_tracer::TraceKey, approx_time_t>, BlockSize>
py_calls_;
};
class TORCH_API RecordQueue {
public:
RecordQueue(const ProfilerConfig& config, std::set<ActivityType> activities);
bool tracePython() const;
ThreadLocalSubqueue* getSubqueue();
void stop();
// NB: This is a destructive operation.
std::pair<
std::vector<std::shared_ptr<Result>>,
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>>
getRecords(
std::function<time_t(approx_time_t)> time_converter,
uint64_t start_time_us,
uint64_t end_time_us);
private:
uint32_t id_;
ProfilerConfig config_;
std::set<ActivityType> activities_;
ska::flat_hash_map<uint64_t, std::unique_ptr<ThreadLocalSubqueue>>
sub_queues_;
std::mutex sub_queue_mutex_;
std::unique_ptr<python_tracer::PythonTracerBase> python_tracer_;
};
} // namespace impl
} // namespace profiler
} // namespace torch
|