1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
#pragma once
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <forward_list>
#include <new>
#include <utility>
#include <vector>
#include <c10/macros/Macros.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/Exception.h>
namespace torch {
namespace profiler {
namespace impl {
// ============================================================================
// == AppendOnlyList ==========================================================
// ============================================================================
// During profiling, we have a very predictable access pattern: we only
// append to the end of the container. We can specialize and outperform both
// std::vector (which must realloc) and std::deque (which performs a double
// indirection), and this class of operation is sufficiently important to the
// profiling hot path to warrant specializing:
// https://godbolt.org/z/rTjozf1c4
// https://quick-bench.com/q/mmfuu71ogwaiULDCJyHdKnHZms4 (Prototype #1,
// int) https://quick-bench.com/q/5vWDW6jjdXVdoffev2zst8D09no (Prototype
// #1, int pair) https://quick-bench.com/q/IfEkfAQMeJSNBA52xtMP6Agcl-Q
// (Prototype #2, int pair)
// https://quick-bench.com/q/wJV2lKmuXL4XyGJzcI5hs4gEHFg (Prototype #3, int
// pair) https://quick-bench.com/q/xiO8ZaBEkYRYUA9dFrMuPLlW9fo (Full impl,
// int pair)
// AppendOnlyList has 2x lower emplace overhead compared to more generic STL
// containers.
//
// The optimal value of `ChunkSize` will vary by use case, but testing shows
// that a value of 1024 does a good job amortizing the `malloc` cost of growth.
// Performance drops off for larger values, so testing on a case-by-case basis
// is recommended if performance is absolutely critical.
template <
typename T,
size_t ChunkSize,
template <typename U, size_t N> class block_t = std::array>
class AppendOnlyList {
public:
using array_t = block_t<T, ChunkSize>;
static_assert(
std::is_base_of<std::array<T, ChunkSize>, array_t>::value,
"AppendOnlyList expects raw low level pointer storage.");
static_assert(ChunkSize > 0, "Block cannot be empty.");
AppendOnlyList() : buffer_last_{buffer_.before_begin()} {}
AppendOnlyList(const AppendOnlyList&) = delete;
AppendOnlyList& operator=(const AppendOnlyList&) = delete;
size_t size() const {
return n_blocks_ * ChunkSize + (size_t)(next_ - end_);
}
template <class... Args>
T* emplace_back(Args&&... args) {
maybe_grow();
::new ((void*)next_) T{std::forward<Args>(args)...};
return next_++;
}
template <typename T0>
typename std::enable_if<
std::is_same<T0, T>::value && std::is_trivially_copyable<T>::value>::type
copy(c10::ArrayRef<T0> src) {
size_t n = src.size();
if (C10_LIKELY(next_ && (next_ + n <= end_))) {
std::memcpy((void*)next_, (void*)src.begin(), n * sizeof(T0));
next_ += n;
} else {
// We could chunk this into several `memcpy`s, but because we expect this
// fallback to be infrequent (n << ChunkSize) the performance impact is
// negligible.
for (auto i : src) {
emplace_back(i);
}
}
}
void clear() {
buffer_.clear();
buffer_last_ = buffer_.before_begin();
n_blocks_ = 0;
next_ = nullptr;
end_ = nullptr;
}
struct Iterator {
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T*;
using reference = T&;
Iterator(std::forward_list<array_t>& buffer, const size_t size)
: block_{buffer.begin()}, size_{size} {}
// End iterator.
Iterator() = default;
bool exhausted() const {
return current_ >= size_;
}
reference operator*() const {
return *current_ptr(/*checked=*/true);
}
pointer operator->() {
return current_ptr(/*checked=*/true);
}
// Prefix increment
Iterator& operator++() {
if (!(++current_ % ChunkSize)) {
block_++;
}
return *this;
}
// Postfix increment
Iterator operator++(int) {
Iterator tmp = *this;
++(*this);
return tmp;
}
friend bool operator==(const Iterator& a, const Iterator& b) {
return a.current_ptr() == b.current_ptr();
}
friend bool operator!=(const Iterator& a, const Iterator& b) {
return a.current_ptr() != b.current_ptr();
}
std::pair<array_t*, size_t> address() const {
if (current_ >= size_) {
return {nullptr, 0};
}
return {&(*block_), current_ % ChunkSize};
}
private:
T* current_ptr(bool checked = false) const {
auto a = address();
if (a.first == nullptr) {
TORCH_INTERNAL_ASSERT(!checked, "Invalid access on AppendOnlyList.");
return nullptr;
}
return a.first->data() + a.second;
}
typename std::forward_list<array_t>::iterator block_;
size_t current_{0};
size_t size_{0};
};
Iterator begin() {
return Iterator(buffer_, size());
}
Iterator end() {
return Iterator();
}
// TODO: cbegin and cend()
// TODO: make private
protected:
void maybe_grow() {
if (C10_UNLIKELY(next_ == end_)) {
buffer_last_ = buffer_.emplace_after(buffer_last_);
n_blocks_++;
next_ = buffer_last_->data();
end_ = next_ + ChunkSize;
}
}
std::forward_list<array_t> buffer_;
// We maintain a pointer to the last element of `buffer_` so that we can
// insert at the end in O(1) time.
typename std::forward_list<array_t>::iterator buffer_last_;
size_t n_blocks_{0};
T* next_{nullptr};
T* end_{nullptr};
};
} // namespace impl
} // namespace profiler
} // namespace torch
|