File: cuda.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (110 lines) | stat: -rw-r--r-- 3,545 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/irange.h>
#include <nvToolsExt.h>
#include <torch/csrc/autograd/profiler.h>

#include <sstream>

namespace torch {
namespace profiler {
namespace impl {
namespace {

static inline void cudaCheck(cudaError_t result, const char* file, int line) {
  if (result != cudaSuccess) {
    std::stringstream ss;
    ss << file << ":" << line << ": ";
    if (result == cudaErrorInitializationError) {
      // It is common for users to use DataLoader with multiple workers
      // and the autograd profiler. Throw a nice error message here.
      ss << "CUDA initialization error. "
         << "This can occur if one runs the profiler in CUDA mode on code "
         << "that creates a DataLoader with num_workers > 0. This operation "
         << "is currently unsupported; potential workarounds are: "
         << "(1) don't use the profiler in CUDA mode or (2) use num_workers=0 "
         << "in the DataLoader or (3) Don't profile the data loading portion "
         << "of your code. https://github.com/pytorch/pytorch/issues/6313 "
         << "tracks profiler support for multi-worker DataLoader.";
    } else {
      ss << cudaGetErrorString(result);
    }
    throw std::runtime_error(ss.str());
  }
}
#define TORCH_CUDA_CHECK(result) cudaCheck(result, __FILE__, __LINE__);

struct CUDAMethods : public ProfilerStubs {
  void record(int* device, ProfilerEventStub* event, int64_t* cpu_ns)
      const override {
    if (device) {
      TORCH_CUDA_CHECK(cudaGetDevice(device));
    }
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    CUevent_st* cuda_event_ptr;
    TORCH_CUDA_CHECK(cudaEventCreate(&cuda_event_ptr));
    *event = std::shared_ptr<CUevent_st>(cuda_event_ptr, [](CUevent_st* ptr) {
      TORCH_CUDA_CHECK(cudaEventDestroy(ptr));
    });
    auto stream = at::cuda::getCurrentCUDAStream();
    if (cpu_ns) {
      *cpu_ns = torch::profiler::impl::getTime();
    }
    TORCH_CUDA_CHECK(cudaEventRecord(cuda_event_ptr, stream));
  }

  float elapsed(const ProfilerEventStub* event, const ProfilerEventStub* event2)
      const override {
    TORCH_CUDA_CHECK(cudaEventSynchronize(event->get()));
    TORCH_CUDA_CHECK(cudaEventSynchronize(event2->get()));
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    float ms;
    TORCH_CUDA_CHECK(cudaEventElapsedTime(&ms, event->get(), event2->get()));
    // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions)
    return ms * 1000.0;
  }

  void mark(const char* name) const override {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    ::nvtxMark(name);
  }

  void rangePush(const char* name) const override {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    ::nvtxRangePushA(name);
  }

  void rangePop() const override {
    ::nvtxRangePop();
  }

  void onEachDevice(std::function<void(int)> op) const override {
    at::cuda::OptionalCUDAGuard device_guard;
    // NOLINTNEXTLINE(bugprone-signed-char-misuse)
    int count = at::cuda::device_count();
    for (const auto i : c10::irange(count)) {
      device_guard.set_index(i);
      op(i);
    }
  }

  void synchronize() const override {
    cudaDeviceSynchronize();
  }

  bool enabled() const override {
    return true;
  }
};

struct RegisterCUDAMethods {
  RegisterCUDAMethods() {
    static CUDAMethods methods;
    registerCUDAMethods(&methods);
  }
};
RegisterCUDAMethods reg;

} // namespace
} // namespace impl
} // namespace profiler
} // namespace torch