File: kineto_shim.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (337 lines) | stat: -rw-r--r-- 9,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#include <torch/csrc/profiler/kineto_shim.h>

#include <type_traits>

#ifdef USE_KINETO
#include <libkineto.h>
#endif

#include <c10/util/Exception.h>

namespace torch {
namespace profiler {
namespace impl {
namespace kineto {

// Here lies pain and `#ifdef USE_KINETO`

#ifdef USE_KINETO
namespace {
const std::set<libkineto::ActivityType> cpuTypes{
    libkineto::ActivityType::CPU_OP,
    libkineto::ActivityType::CPU_INSTANT_EVENT,
    libkineto::ActivityType::USER_ANNOTATION,
    libkineto::ActivityType::EXTERNAL_CORRELATION,
    libkineto::ActivityType::CUDA_RUNTIME,
    libkineto::ActivityType::PYTHON_FUNCTION,
};

const std::set<libkineto::ActivityType> cudaTypes = {
    libkineto::ActivityType::GPU_MEMCPY,
    libkineto::ActivityType::GPU_MEMSET,
    libkineto::ActivityType::CONCURRENT_KERNEL,
    // CUDA_RUNTIME appears in both cpuTypes and cudaTypes.
    libkineto::ActivityType::CUDA_RUNTIME,
};
} // namespace
#endif // USE_KINETO

static_assert(
    std::is_pod<DeviceAndResource>::value,
    "Kineto specific details should be in `kineto_ids`.");

const DeviceAndResource kineto_ids() {
#ifdef USE_KINETO
  return {
      /*device=*/libkineto::processId(),
      /*resource=*/libkineto::systemThreadId()};
#else
  return {};
#endif // USE_KINETO
}

void addMetadata(
    const activity_t* activity,
    const std::string& key,
    const std::string& value) {
#ifdef USE_KINETO
  // ActivityTraceInterface returns const pointers, so we have to cast away the
  // constness to add metadata.
  const_cast<activity_t*>(activity)->addMetadata(key, value);
#endif // USE_KINETO
}

TraceWrapper::TraceWrapper(const int64_t start_time, const std::string& name)
#ifdef USE_KINETO
    : cpu_trace_(std::make_unique<libkineto::CpuTraceBuffer>()) {
  cpu_trace_->span.startTime = start_time;
  cpu_trace_->gpuOpCount = -1;
  cpu_trace_->span.name = name;
}
#else
{
}
#endif // USE_KINETO

TraceWrapper::~TraceWrapper() = default;

activity_t* TraceWrapper::addCPUActivity(
    const std::string& name,
    const libkineto::ActivityType type,
    const DeviceAndResource device_and_resource,
    const uint64_t correlation_id,
    const int64_t start_time,
    const int64_t end_time) {
#ifdef USE_KINETO
  TORCH_CHECK((bool)(*this), "Cannot add event to non-existent trace.");
  cpu_trace_->emplace_activity(cpu_trace_->span, type, name);
  auto& act = libkineto::CpuTraceBuffer::toRef(cpu_trace_->activities.back());
  act.device = device_and_resource.device;
  act.resource = device_and_resource.resource;
  act.id = correlation_id;
  act.startTime = start_time;
  if (type != libkineto::ActivityType::CPU_INSTANT_EVENT) {
    act.endTime = end_time;
  }
  return cpu_trace_->activities.back().get();
#else
  return nullptr;
#endif // USE_KINETO
}

void TraceWrapper::transferCpuTrace(int64_t end_time) {
#ifdef USE_KINETO
  cpu_trace_->span.endTime = end_time;
  libkineto::api().activityProfiler().transferCpuTrace(std::move(cpu_trace_));
#endif // USE_KINETO
}

TraceWrapper::operator bool() const {
#ifdef USE_KINETO
  return cpu_trace_ != nullptr;
#else
  return false;
#endif // USE_KINETO
}

ActivityTraceWrapper::ActivityTraceWrapper(
    std::unique_ptr<interface_trace_t>&& trace)
    : trace_(std::move(trace)) {}

ActivityTraceWrapper::operator bool() const {
#ifdef USE_KINETO
  return trace_ != nullptr;
#else
  return false;
#endif // USE_KINETO
}

void ActivityTraceWrapper::save(const std::string& path) {
#ifdef USE_KINETO
  TORCH_CHECK(!saved_, "Trace is already saved.");
  TORCH_CHECK(trace_ != nullptr, "Missing trace.")
  trace_->save(path);
  saved_ = true;
#else
  TORCH_CHECK(
      false,
      "Saving a trace requires using torch.profiler with Kineto support (USE_KINETO=1)");
#endif // USE_KINETO
}

namespace {
// Handles processing of Experimental Config options for Kineto
class ExperimentalConfigWrapper {
 public:
  explicit ExperimentalConfigWrapper(
      const torch::profiler::impl::ExperimentalConfig& config)
      : config_(config) {}

  bool assertValid(const ActivitySet& activities) {
    // Kineto supports reading performance events per kernel/iteration
    // using CUPTI Range based profiler API. In this mode however we
    // do not trace CPU or GPU events.
    bool cupti_range_profiler = config_.profiler_metrics.size() > 0;
    if (cupti_range_profiler &&
        activities.count(torch::autograd::profiler::ActivityType::CPU)) {
      LOG(WARNING)
          << "Cannot run range profiler with CPU activities, please only"
          << " use CUDA activity type";
      return false;
    }
    return cupti_range_profiler;
  }

  void prepareTraceWithExperimentalOptions() {
#ifdef USE_KINETO
    std::set<libkineto::ActivityType> k_activities{
        libkineto::ActivityType::CUDA_PROFILER_RANGE};

    const size_t num_metrics = config_.profiler_metrics.size();
    std::stringstream configss;

    LOG(INFO) << "CUPTI profiler metrics size = " << num_metrics;

    configss << "ACTIVITIES_WARMUP_PERIOD_SECS=0\n"
             << "CUPTI_PROFILER_METRICS=";

    for (int i = 0; i < num_metrics; i++) {
      configss << config_.profiler_metrics[i];
      if (num_metrics > 1 && i < (num_metrics - 1)) {
        configss << ",";
      }
    }
    configss << "\nCUPTI_PROFILER_ENABLE_PER_KERNEL="
             << (config_.profiler_measure_per_kernel ? "true" : "false")
             << "\n";
    LOG(INFO) << "Generated config = " << configss.str();

    libkineto::api().activityProfiler().prepareTrace(
        k_activities, configss.str());
#endif // USE_KINETO
  }

 private:
  const torch::profiler::impl::ExperimentalConfig& config_;
};
} // namespace

void prepareTrace(
    const bool cpuOnly,
    const ActivitySet& activities,
    const torch::profiler::impl::ExperimentalConfig& config) {
#ifdef USE_KINETO
  if (!libkineto::api().isProfilerRegistered()) {
    libkineto_init(/*cpuOnly=*/cpuOnly, /*logOnError=*/true);
    libkineto::api().suppressLogMessages();
  }

  if (!libkineto::api().isProfilerInitialized()) {
    libkineto::api().initProfilerIfRegistered();
  }

  std::set<libkineto::ActivityType> k_activities;
  if (activities.count(torch::autograd::profiler::ActivityType::CPU)) {
    k_activities.insert(cpuTypes.begin(), cpuTypes.end());
  }
  if (activities.count(torch::autograd::profiler::ActivityType::CUDA)) {
    k_activities.insert(cudaTypes.begin(), cudaTypes.end());
  }

  ExperimentalConfigWrapper configWrap(config);

  // Experimental Configuration options are present
  if (config && configWrap.assertValid(activities)) {
    configWrap.prepareTraceWithExperimentalOptions();
    return;
  }

  libkineto::api().activityProfiler().prepareTrace(k_activities);
#endif // USE_KINETO
}

void startTrace() {
#ifdef USE_KINETO
  libkineto::api().activityProfiler().startTrace();
#endif // USE_KINETO
}

ActivityTraceWrapper stopTrace() {
  return ActivityTraceWrapper{
#ifdef USE_KINETO
      libkineto::api().activityProfiler().stopTrace()
#else
      std::make_unique<interface_trace_t>()
#endif // USE_KINETO
  };
}

void pushCorrelationId(uint64_t correlation_id) {
#ifdef USE_KINETO
  libkineto::api().activityProfiler().pushCorrelationId(correlation_id);
#endif // USE_KINETO
}

void pushUserCorrelationId(uint64_t correlation_id) {
#ifdef USE_KINETO
  libkineto::api().activityProfiler().pushUserCorrelationId(correlation_id);
#endif // USE_KINETO
}

void popCorrelationId() {
#ifdef USE_KINETO
  libkineto::api().activityProfiler().popCorrelationId();
#endif // USE_KINETO
}

void popUserCorrelationId() {
#ifdef USE_KINETO
  libkineto::api().activityProfiler().popUserCorrelationId();
#endif // USE_KINETO
}

void recordThreadInfo() {
#ifdef USE_KINETO
  libkineto::api().activityProfiler().recordThreadInfo();
#endif // USE_KINETO
}

} // namespace kineto
} // namespace impl
} // namespace profiler

namespace autograd {
namespace profiler {
c10::DeviceType deviceTypeFromActivity(libkineto::ActivityType activity_type) {
  // fallthrough
  switch (activity_type) {
    case libkineto::ActivityType::GPU_MEMCPY:
    case libkineto::ActivityType::GPU_MEMSET:
    case libkineto::ActivityType::CONCURRENT_KERNEL:
    case libkineto::ActivityType::GPU_USER_ANNOTATION:
    case libkineto::ActivityType::CUDA_PROFILER_RANGE:
      return c10::DeviceType::CUDA;
    case libkineto::ActivityType::CPU_OP:
    case libkineto::ActivityType::USER_ANNOTATION:
    case libkineto::ActivityType::EXTERNAL_CORRELATION:
    case libkineto::ActivityType::CUDA_RUNTIME:
    case libkineto::ActivityType::CPU_INSTANT_EVENT:
    case libkineto::ActivityType::GLOW_RUNTIME:
    case libkineto::ActivityType::PYTHON_FUNCTION:
      return c10::DeviceType::CPU;
    default: {
      TORCH_WARN(
          "Unknown activity type (",
          (uint8_t)activity_type,
          "), assuming CPU device");
      return c10::DeviceType::CPU;
    }
  }
}

void addMetadataJson(const std::string& key, const std::string& value) {
#ifdef USE_KINETO
  if (libkineto::api().isProfilerInitialized()) {
    libkineto::api().activityProfiler().addMetadata(key, value);
  } else {
    LOG(WARNING) << "Profiler is not initialized: skipping profiling metadata";
  }
#else
  LOG(WARNING) << "Adding profiling metadata requires using "
               << "torch.profiler with Kineto support (USE_KINETO=1)";
#endif // USE_KINETO
}

void profilerStep() {
#ifdef USE_KINETO
  if (libkineto::api().isProfilerInitialized()) {
    libkineto::api().activityProfiler().step();
  } else {
    LOG(WARNING) << "Profiler is not initialized: skipping step() invocation";
  }
#endif // USE_KINETO
}

} // namespace profiler
} // namespace autograd
} // namespace torch