1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/profiler/util.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/irange.h>
#include <fmt/format.h>
#ifdef USE_KINETO
#include <libkineto.h>
#endif
namespace torch {
namespace profiler {
namespace impl {
ApproximateClockToUnixTimeConverter::ApproximateClockToUnixTimeConverter()
: start_times_(measurePairs()) {}
ApproximateClockToUnixTimeConverter::UnixAndApproximateTimePair
ApproximateClockToUnixTimeConverter::measurePair() {
// Take a measurement on either side to avoid an ordering bias.
auto fast_0 = getApproximateTime();
auto wall = std::chrono::system_clock::now();
auto fast_1 = getApproximateTime();
TORCH_INTERNAL_ASSERT(fast_1 >= fast_0, "getCount is non-monotonic.");
auto t = std::chrono::duration_cast<std::chrono::nanoseconds>(
wall.time_since_epoch());
// `x + (y - x) / 2` is a more numerically stable average than `(x + y) / 2`.
return {t.count(), fast_0 + (fast_1 - fast_0) / 2};
}
ApproximateClockToUnixTimeConverter::time_pairs
ApproximateClockToUnixTimeConverter::measurePairs() {
static constexpr auto n_warmup = 5;
for (C10_UNUSED const auto _ : c10::irange(n_warmup)) {
getApproximateTime();
steady_clock_t::now();
}
time_pairs out;
for (const auto i : c10::irange(out.size())) {
out[i] = measurePair();
}
return out;
}
std::function<time_t(approx_time_t)> ApproximateClockToUnixTimeConverter::
makeConverter() {
auto end_times = measurePairs();
// Compute the real time that passes for each tick of the approximate clock.
std::array<long double, replicates> scale_factors{};
for (const auto i : c10::irange(replicates)) {
auto delta_ns = end_times[i].t_ - start_times_[i].t_;
auto delta_approx = end_times[i].approx_t_ - start_times_[i].approx_t_;
scale_factors[i] = (double)delta_ns / (double)delta_approx;
}
std::sort(scale_factors.begin(), scale_factors.end());
long double scale_factor = scale_factors[replicates / 2 + 1];
// We shift all times by `t0` for better numerics. Double precision only has
// 16 decimal digits of accuracy, so if we blindly multiply times by
// `scale_factor` we may suffer from precision loss. The choice of `t0` is
// mostly arbitrary; we just need a factor that is the correct order of
// magnitude to bring the intermediate values closer to zero. We are not,
// however, guaranteed that `t0_approx` is *exactly* the getApproximateTime
// equivilent of `t0`; it is only an estimate that we have to fine tune.
auto t0 = start_times_[0].t_;
auto t0_approx = start_times_[0].approx_t_;
std::array<double, replicates> t0_correction{};
for (const auto i : c10::irange(replicates)) {
auto dt = start_times_[i].t_ - t0;
auto dt_approx =
(double)(start_times_[i].approx_t_ - t0_approx) * scale_factor;
t0_correction[i] = dt - (time_t)dt_approx;
}
t0 += t0_correction[t0_correction.size() / 2 + 1];
return [=](approx_time_t t_approx) {
// See above for why this is more stable than `A * t_approx + B`.
return (time_t)((double)(t_approx - t0_approx) * scale_factor) + t0;
};
}
namespace {
c10::optional<bool> soft_assert_raises_;
} // namespace
void setSoftAssertRaises(c10::optional<bool> value) {
soft_assert_raises_ = value;
}
bool softAssertRaises() {
return soft_assert_raises_.value_or(
#ifdef NDEBUG
false
#else
true
#endif
);
}
// ----------------------------------------------------------------------------
// -- NVTX --------------------------------------------------------------------
// ----------------------------------------------------------------------------
std::string getNvtxStr(
const char* name,
int64_t sequence_nr,
const std::vector<std::vector<int64_t>>& shapes,
at::RecordFunctionHandle op_id,
const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids) {
if (sequence_nr >= -1 || shapes.size() > 0) {
std::string str;
if (sequence_nr >= 0) {
str = fmt::format("{}, seq = {}", name, sequence_nr);
} else if (sequence_nr == -1) {
str = name;
} else {
#if defined(USE_ROCM)
// Only ROCM supports < -1 sequence_nr
str = name;
#endif
}
if (op_id > 0) {
str = fmt::format("{}, op_id = {}", str, op_id);
}
if (shapes.size() > 0) {
str = fmt::format("{}, sizes = {}", str, shapesToStr(shapes));
}
// Include the op ids of the input edges so
// you can build the network graph
if (input_op_ids.size() > 0) {
str = fmt::format(
"{}, input_op_ids = {}", str, inputOpIdsToStr(input_op_ids));
}
return str;
} else {
return name;
}
}
// ----------------------------------------------------------------------------
// -- Op context (shapes, call stack) -----------------------------------------
// ----------------------------------------------------------------------------
std::vector<FileLineFunc> prepareCallstack(
const std::vector<jit::StackEntry>& cs) {
std::vector<FileLineFunc> entries;
entries.reserve(cs.size());
for (const auto& entry : cs) {
auto& range = entry.range;
if (range.source()) {
auto& src = range.source();
if (src && src->filename()) {
auto line =
src->starting_line_no() + src->lineno_for_offset(range.start());
entries.emplace_back(
FileLineFunc{*(src->filename()), line, entry.filename});
}
}
}
return entries;
}
std::vector<std::string> callstackStr(const std::vector<FileLineFunc>& cs) {
std::vector<std::string> cs_str;
cs_str.reserve(cs.size());
for (const auto& entry : cs) {
std::stringstream loc;
loc << entry.filename << "(" << entry.line << "): " << entry.funcname;
cs_str.push_back(loc.str());
}
return cs_str;
}
std::string stacksToStr(
const std::vector<std::string>& stacks,
const char* delim) {
std::ostringstream oss;
std::transform(
stacks.begin(),
stacks.end(),
std::ostream_iterator<std::string>(oss, delim),
[](std::string s) -> std::string {
#ifdef _WIN32
// replace the windows backslash with forward slash
std::replace(s.begin(), s.end(), '\\', '/');
#endif
return s;
});
auto rc = oss.str();
return "\"" + rc + "\"";
}
std::vector<std::vector<int64_t>> flattenList(
c10::List<c10::IValue> list,
std::string fn_name) {
std::vector<std::vector<int64_t>> tensor_dims;
for (const c10::IValue input : list) {
if (input.isTensor()) {
const at::Tensor& tensor = input.toTensor();
if (tensor.defined()) {
tensor_dims.push_back(input.toTensor().sizes().vec());
}
}
}
return tensor_dims;
}
std::vector<std::vector<int64_t>> inputSizes(
const at::RecordFunction& fn,
bool flatten_list_enabled) {
std::vector<std::vector<int64_t>> sizes;
sizes.reserve(fn.inputs().size());
for (const c10::IValue& input : fn.inputs()) {
if (input.isTensor()) {
const at::Tensor& tensor = input.toTensor();
if (tensor.defined()) {
sizes.push_back(input.toTensor().sizes().vec());
} else {
sizes.emplace_back();
}
} else if (input.isList()) {
std::vector<std::vector<int64_t>> tmp_sizes;
if (flatten_list_enabled) {
tmp_sizes = flattenList(input.toList(), std::string(fn.name()));
}
// Extend the current sizes array by the array returned from input sizes
if (!tmp_sizes.empty()) {
sizes.insert(sizes.end(), tmp_sizes.begin(), tmp_sizes.end());
} else {
sizes.emplace_back();
}
} else {
sizes.emplace_back();
}
}
return sizes;
}
std::string shapesToStr(const std::vector<std::vector<int64_t>>& shapes) {
std::string str("[");
for (const auto t_idx : c10::irange(shapes.size())) {
if (t_idx > 0) {
str = fmt::format("{}, ", str);
}
str = fmt::format("{}[", str);
for (const auto s_idx : c10::irange(shapes[t_idx].size())) {
if (s_idx > 0) {
str = fmt::format("{}, ", str);
}
str = fmt::format("{}{}", str, shapes[t_idx][s_idx]);
}
str = fmt::format("{}]", str);
}
str = fmt::format("{}]", str);
return str;
}
std::string inputOpIdsToStr(
const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids) {
std::string str("[");
int idx = 0;
for (const auto& op_id_info_pair : input_op_ids) {
if (idx++ > 0) {
str = fmt::format("{}, ", str);
}
// (OpId,OutputNr)
str = fmt::format(
"{}({},{})", str, op_id_info_pair.first, op_id_info_pair.second);
}
str = fmt::format("{}]", str);
return str;
}
std::string dtypesToStr(const std::vector<std::string>& types) {
if (types.empty()) {
return "[]";
} else {
std::ostringstream oss;
std::transform(
types.begin(),
types.end(),
std::ostream_iterator<std::string>(oss, ", "),
[](std::string s) -> std::string { return "\"" + s + "\""; });
auto rc = oss.str();
rc.erase(rc.length() - 2); // remove last ", "
return "[" + rc + "]";
}
}
std::vector<std::string> inputTypes(const at::RecordFunction& fn) {
std::vector<std::string> types;
types.reserve(fn.inputs().size());
for (const c10::IValue& input : fn.inputs()) {
if (input.isTensor()) {
const at::Tensor& tensor = input.toTensor();
if (tensor.defined()) {
types.push_back(
static_cast<std::string>(input.toTensor().dtype().name()));
} else {
types.emplace_back();
}
} else if (input.isScalar() || input.isList()) {
types.push_back(input.tagKind());
} else {
types.emplace_back();
}
}
return types;
}
// ----------------------------------------------------------------------------
// -- FLOPS -------------------------------------------------------------------
// ----------------------------------------------------------------------------
static constexpr auto kConv2dStride = 3;
static constexpr auto kConv2dPadding = 4;
static constexpr auto kConv2dDilation = 5;
static constexpr auto kConv2dGroups = 6;
// List of supported operators
static constexpr auto kConv2dOp = "aten::conv2d";
static constexpr auto kMMOp = "aten::mm";
static constexpr auto kAddMMOp = "aten::addmm";
static constexpr auto kMulOp = "aten::mul";
static constexpr auto kAddOp = "aten::add";
static constexpr auto kBMMOp = "aten::bmm";
static constexpr auto kBAddBMMOp = "aten::baddbmm";
static constexpr auto kInputSize = "input_size";
static constexpr auto kWeightSize = "weight_size";
static constexpr auto kGroups = "groups";
static constexpr auto kPadding = "padding";
static constexpr auto kStride = "stride";
static constexpr auto kDilation = "dilation";
static constexpr auto kMatSize = "mat_size";
static constexpr auto kMat1Size = "mat1_size";
static constexpr auto kMat2Size = "mat2_size";
static bool validateInput(
const std::string& op_name,
size_t min_size,
c10::ArrayRef<const c10::IValue> inputs,
const c10::ArrayRef<int>& should_be_tensor) {
std::stringstream ss;
if (inputs.size() < min_size) {
ss << "Failed to save extra arguments for flops compuation of op "
<< op_name << ", min size: " << min_size
<< ", actual size: " << inputs.size();
TORCH_WARN(ss.str());
return false;
}
for (auto index : should_be_tensor) {
if (!inputs[index].isTensor()) {
ss << "Failed to save extra arguments for flops compuation of op "
<< op_name << ", input[" << index << "] must be a tensor.";
TORCH_WARN(ss.str());
return false;
}
}
return true;
}
std::unordered_map<std::string, c10::IValue> saveExtraArgs(
const at::RecordFunction& fn) {
// for specific types of fn, return the saved extra args for computing flops
std::unordered_map<std::string, c10::IValue> map;
auto inputs = fn.inputs();
std::string fname(fn.name());
if (inputs.empty()) {
// Input shape is unavailable, return empty map
return map;
}
if (fname == kConv2dOp) {
bool check = validateInput(fname, kConv2dGroups + 1, inputs, {0, 1});
if (!check) {
return map;
}
at::Tensor input = inputs[0].toTensor();
at::Tensor weight = inputs[1].toTensor();
if (weight.sizes().size() != 4) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because it requires a 4D kernel tensor.");
return map;
}
map[kInputSize] = at::IValue(input.sizes());
map[kWeightSize] = at::IValue(weight.sizes());
map[kStride] = inputs[kConv2dStride];
map[kPadding] = inputs[kConv2dPadding];
map[kDilation] = inputs[kConv2dDilation];
map[kGroups] = inputs[kConv2dGroups];
} else if (fname == kMMOp) {
bool check = validateInput(fname, 2, inputs, {0, 1});
if (!check) {
return map;
}
at::Tensor left = inputs[0].toTensor();
at::Tensor right = inputs[1].toTensor();
map[kMat1Size] = at::IValue(left.sizes());
map[kMat2Size] = at::IValue(right.sizes());
} else if (fname == kAddMMOp) {
bool check = validateInput(fname, 3, inputs, {0, 1, 2});
if (!check) {
return map;
}
// Exact FLOP count depends on scaling factors alpha and beta but
// just assume these are +=1.
// (similar to http://www.netlib.org/lapack/lawnspdf/lawn41.pdf,
// "Operations Count for the BLAS and LAPACK", Table 3, SGEMM)
at::Tensor left = inputs[1].toTensor();
at::Tensor right = inputs[2].toTensor();
map[kMat1Size] = at::IValue(left.sizes());
map[kMat2Size] = at::IValue(right.sizes());
} else if (fname == kMulOp) {
bool check = validateInput(fname, 1, inputs, {0});
if (!check) {
return map;
}
at::Tensor mat = inputs[0].toTensor();
map[kMatSize] = at::IValue(mat.sizes());
} else if (fname == kAddOp) {
bool check = validateInput(fname, 1, inputs, {0});
if (!check) {
return map;
}
at::Tensor mat = inputs[0].toTensor();
map[kMatSize] = at::IValue(mat.sizes());
} else if (fname == kBMMOp) {
bool check = validateInput(fname, 2, inputs, {0, 1});
if (!check) {
return map;
}
at::Tensor left = inputs[0].toTensor();
at::Tensor right = inputs[1].toTensor();
map[kMat1Size] = at::IValue(left.sizes());
map[kMat2Size] = at::IValue(right.sizes());
} else if (fname == kBAddBMMOp) {
bool check = validateInput(fname, 3, inputs, {0, 1, 2});
if (!check) {
return map;
}
// Exact FLOP count depends on scaling factors alpha and beta but
// just assume these are +=1.
// (similar to http://www.netlib.org/lapack/lawnspdf/lawn41.pdf,
// "Operations Count for the BLAS and LAPACK", Table 3, SGEMM)
at::Tensor left = inputs[1].toTensor();
at::Tensor right = inputs[2].toTensor();
map[kMat1Size] = at::IValue(left.sizes());
map[kMat2Size] = at::IValue(right.sizes());
}
return map;
}
uint64_t computeFlops(
const std::string& op_name,
const std::unordered_map<std::string, c10::IValue>& extra_args) {
if (op_name == kConv2dOp) {
if (extra_args.find(kInputSize) == extra_args.end() ||
extra_args.find(kWeightSize) == extra_args.end() ||
extra_args.find(kGroups) == extra_args.end() ||
extra_args.find(kPadding) == extra_args.end() ||
extra_args.find(kStride) == extra_args.end() ||
extra_args.find(kDilation) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for aten::conv2d requires groups, padding, stride, dilation, input_size, and weight_size in saved arguments.");
return 0;
}
auto input_sizes_ref = extra_args.at(kInputSize);
auto kernel_sizes_ref = extra_args.at(kWeightSize);
auto groups_ref = extra_args.at(kGroups);
auto padding_ref = extra_args.at(kPadding);
auto stride_ref = extra_args.at(kStride);
auto dilation_ref = extra_args.at(kDilation);
if (!input_sizes_ref.isIntList() || !kernel_sizes_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because it requires input and weight tensor sizes.");
return 0;
}
if (!padding_ref.isIntList() || !stride_ref.isIntList() ||
!dilation_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because it requires padding, stride, and dilation values.");
return 0;
}
const auto input_sizes = input_sizes_ref.toDimVector();
const auto kernel_sizes = kernel_sizes_ref.toDimVector();
const uint64_t groups = groups_ref.toInt();
const std::vector<int64_t> padding = padding_ref.toIntVector();
const std::vector<int64_t> stride = stride_ref.toIntVector();
const std::vector<int64_t> dilation = dilation_ref.toIntVector();
if (input_sizes.size() != 4 || kernel_sizes.size() != 4) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because both input and weight must be size 4.");
return 0;
}
if (!groups) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because group size must not be 0.");
return 0;
}
if (padding.size() != 2 || dilation.size() != 2) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because both padding and dilation must be size 2.");
return 0;
}
if (stride.size() != 2 || (stride[0] * stride[1] == 0)) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because stride must be size 2 and cannot be 0.");
return 0;
}
// format of the input is defined in
// torch.ao.nn.quantized.functional.conv2d()
uint64_t minibatch = 0, in_channels = 0, input_h = 0, input_w = 0;
uint64_t out_channels = 0, kernel_h = 0, kernel_w = 0;
const uint64_t conv2d_multiply_factor = 2;
std::tie(minibatch, in_channels, input_h, input_w) = std::make_tuple(
input_sizes[0], input_sizes[1], input_sizes[2], input_sizes[3]);
std::tie(out_channels, std::ignore, kernel_h, kernel_w) = std::make_tuple(
kernel_sizes[0], kernel_sizes[1], kernel_sizes[2], kernel_sizes[3]);
uint64_t output_h =
(input_h + 2 * padding[0] - dilation[0] * (kernel_h - 1) - 1) /
stride[0] +
1;
uint64_t output_w =
(input_w + 2 * padding[1] - dilation[1] * (kernel_w - 1) - 1) /
stride[1] +
1;
return conv2d_multiply_factor * minibatch * output_h * output_w * kernel_h *
kernel_w * in_channels * out_channels / groups;
} else if (op_name == kMMOp || op_name == kAddMMOp) {
if (extra_args.find(kMat1Size) == extra_args.end() ||
extra_args.find(kMat2Size) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for ",
op_name,
" requires mat1_size and mat2_size in saved arguments.");
return 0;
}
auto mat1_sizes_ref = extra_args.at(kMat1Size);
auto mat2_sizes_ref = extra_args.at(kMat2Size);
if (!mat1_sizes_ref.isIntList() || !mat2_sizes_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op ",
op_name,
" because it requires mat1_size and mat2_size to be IntList.");
return 0;
}
const auto mat1_size = mat1_sizes_ref.toDimVector();
const auto mat2_size = mat2_sizes_ref.toDimVector();
if (mat1_size.size() == 0) {
return 0;
}
int64_t overlap_dim = mat1_size.back();
if (overlap_dim == 0) {
return 0;
}
const uint64_t gemm_multiply_factor = 2;
uint64_t flops = 1;
for (int64_t dim : mat1_size) {
flops *= dim;
}
flops /= overlap_dim;
for (int64_t dim : mat2_size) {
flops *= dim;
}
flops *= gemm_multiply_factor;
return flops;
} else if (op_name == kBMMOp || op_name == kBAddBMMOp) {
if (extra_args.find(kMat1Size) == extra_args.end() ||
extra_args.find(kMat2Size) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for ",
op_name,
" requires mat1_size and mat2_size in saved arguments.");
return 0;
}
auto mat1_sizes_ref = extra_args.at(kMat1Size);
auto mat2_sizes_ref = extra_args.at(kMat2Size);
if (!mat1_sizes_ref.isIntList() || !mat2_sizes_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op ",
op_name,
" because it requires mat1_size and mat2_size to be IntList.");
return 0;
}
const auto mat1_size = mat1_sizes_ref.toDimVector();
const auto mat2_size = mat2_sizes_ref.toDimVector();
if (mat1_size.size() == 0) {
return 0;
}
int64_t batch_size = mat1_size.front();
if (batch_size == 0) {
return 0;
}
int64_t overlap_dim = mat1_size.back();
if (overlap_dim == 0) {
return 0;
}
const uint64_t gemm_multiply_factor = 2;
uint64_t flops = 1;
for (int64_t dim : mat1_size) {
flops *= dim;
}
flops /= overlap_dim;
flops /= batch_size;
for (int64_t dim : mat2_size) {
flops *= dim;
}
flops *= gemm_multiply_factor;
return flops;
} else if (op_name == kMulOp) {
if (extra_args.find(kMatSize) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for aten::mul.Tensor requires mat_size in saved arguments.");
return 0;
}
auto mat_sizes = extra_args.at(kMatSize);
if (!mat_sizes.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::mul because it requires mat_size to be IntList.");
return 0;
}
const auto mat_size = mat_sizes.toDimVector();
uint64_t flops = 1;
for (int64_t dim : mat_size) {
flops *= dim;
}
return flops;
} else if (op_name == kAddOp) {
if (extra_args.find(kMatSize) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for aten::add.Tensor requires mat_size in saved arguments.");
return 0;
}
auto mat_sizes = extra_args.at(kMatSize);
if (!mat_sizes.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::add because it requires mat_size to be IntList.");
return 0;
}
const auto mat_size = mat_sizes.toDimVector();
uint64_t flops = 1;
for (int64_t dim : mat_size) {
flops *= dim;
}
return flops;
}
return 0;
}
} // namespace impl
} // namespace profiler
} // namespace torch
|