File: util.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (677 lines) | stat: -rw-r--r-- 22,399 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/profiler/util.h>

#include <c10/util/ArrayRef.h>
#include <c10/util/irange.h>
#include <fmt/format.h>

#ifdef USE_KINETO
#include <libkineto.h>
#endif

namespace torch {
namespace profiler {
namespace impl {

ApproximateClockToUnixTimeConverter::ApproximateClockToUnixTimeConverter()
    : start_times_(measurePairs()) {}

ApproximateClockToUnixTimeConverter::UnixAndApproximateTimePair
ApproximateClockToUnixTimeConverter::measurePair() {
  // Take a measurement on either side to avoid an ordering bias.
  auto fast_0 = getApproximateTime();
  auto wall = std::chrono::system_clock::now();
  auto fast_1 = getApproximateTime();

  TORCH_INTERNAL_ASSERT(fast_1 >= fast_0, "getCount is non-monotonic.");
  auto t = std::chrono::duration_cast<std::chrono::nanoseconds>(
      wall.time_since_epoch());

  // `x + (y - x) / 2` is a more numerically stable average than `(x + y) / 2`.
  return {t.count(), fast_0 + (fast_1 - fast_0) / 2};
}

ApproximateClockToUnixTimeConverter::time_pairs
ApproximateClockToUnixTimeConverter::measurePairs() {
  static constexpr auto n_warmup = 5;
  for (C10_UNUSED const auto _ : c10::irange(n_warmup)) {
    getApproximateTime();
    steady_clock_t::now();
  }

  time_pairs out;
  for (const auto i : c10::irange(out.size())) {
    out[i] = measurePair();
  }
  return out;
}

std::function<time_t(approx_time_t)> ApproximateClockToUnixTimeConverter::
    makeConverter() {
  auto end_times = measurePairs();

  // Compute the real time that passes for each tick of the approximate clock.
  std::array<long double, replicates> scale_factors{};
  for (const auto i : c10::irange(replicates)) {
    auto delta_ns = end_times[i].t_ - start_times_[i].t_;
    auto delta_approx = end_times[i].approx_t_ - start_times_[i].approx_t_;
    scale_factors[i] = (double)delta_ns / (double)delta_approx;
  }
  std::sort(scale_factors.begin(), scale_factors.end());
  long double scale_factor = scale_factors[replicates / 2 + 1];

  // We shift all times by `t0` for better numerics. Double precision only has
  // 16 decimal digits of accuracy, so if we blindly multiply times by
  // `scale_factor` we may suffer from precision loss. The choice of `t0` is
  // mostly arbitrary; we just need a factor that is the correct order of
  // magnitude to bring the intermediate values closer to zero. We are not,
  // however, guaranteed that `t0_approx` is *exactly* the getApproximateTime
  // equivilent of `t0`; it is only an estimate that we have to fine tune.
  auto t0 = start_times_[0].t_;
  auto t0_approx = start_times_[0].approx_t_;
  std::array<double, replicates> t0_correction{};
  for (const auto i : c10::irange(replicates)) {
    auto dt = start_times_[i].t_ - t0;
    auto dt_approx =
        (double)(start_times_[i].approx_t_ - t0_approx) * scale_factor;
    t0_correction[i] = dt - (time_t)dt_approx;
  }
  t0 += t0_correction[t0_correction.size() / 2 + 1];

  return [=](approx_time_t t_approx) {
    // See above for why this is more stable than `A * t_approx + B`.
    return (time_t)((double)(t_approx - t0_approx) * scale_factor) + t0;
  };
}

namespace {
c10::optional<bool> soft_assert_raises_;
} // namespace

void setSoftAssertRaises(c10::optional<bool> value) {
  soft_assert_raises_ = value;
}

bool softAssertRaises() {
  return soft_assert_raises_.value_or(
#ifdef NDEBUG
      false
#else
      true
#endif
  );
}

// ----------------------------------------------------------------------------
// -- NVTX --------------------------------------------------------------------
// ----------------------------------------------------------------------------
std::string getNvtxStr(
    const char* name,
    int64_t sequence_nr,
    const std::vector<std::vector<int64_t>>& shapes,
    at::RecordFunctionHandle op_id,
    const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids) {
  if (sequence_nr >= -1 || shapes.size() > 0) {
    std::string str;
    if (sequence_nr >= 0) {
      str = fmt::format("{}, seq = {}", name, sequence_nr);
    } else if (sequence_nr == -1) {
      str = name;
    } else {
#if defined(USE_ROCM)
      // Only ROCM supports < -1 sequence_nr
      str = name;
#endif
    }
    if (op_id > 0) {
      str = fmt::format("{}, op_id = {}", str, op_id);
    }
    if (shapes.size() > 0) {
      str = fmt::format("{}, sizes = {}", str, shapesToStr(shapes));
    }
    // Include the op ids of the input edges so
    // you can build the network graph
    if (input_op_ids.size() > 0) {
      str = fmt::format(
          "{}, input_op_ids = {}", str, inputOpIdsToStr(input_op_ids));
    }
    return str;
  } else {
    return name;
  }
}

// ----------------------------------------------------------------------------
// -- Op context (shapes, call stack) -----------------------------------------
// ----------------------------------------------------------------------------
std::vector<FileLineFunc> prepareCallstack(
    const std::vector<jit::StackEntry>& cs) {
  std::vector<FileLineFunc> entries;
  entries.reserve(cs.size());
  for (const auto& entry : cs) {
    auto& range = entry.range;
    if (range.source()) {
      auto& src = range.source();
      if (src && src->filename()) {
        auto line =
            src->starting_line_no() + src->lineno_for_offset(range.start());
        entries.emplace_back(
            FileLineFunc{*(src->filename()), line, entry.filename});
      }
    }
  }
  return entries;
}

std::vector<std::string> callstackStr(const std::vector<FileLineFunc>& cs) {
  std::vector<std::string> cs_str;
  cs_str.reserve(cs.size());
  for (const auto& entry : cs) {
    std::stringstream loc;
    loc << entry.filename << "(" << entry.line << "): " << entry.funcname;
    cs_str.push_back(loc.str());
  }
  return cs_str;
}

std::string stacksToStr(
    const std::vector<std::string>& stacks,
    const char* delim) {
  std::ostringstream oss;
  std::transform(
      stacks.begin(),
      stacks.end(),
      std::ostream_iterator<std::string>(oss, delim),
      [](std::string s) -> std::string {
#ifdef _WIN32
        // replace the windows backslash with forward slash
        std::replace(s.begin(), s.end(), '\\', '/');
#endif
        return s;
      });
  auto rc = oss.str();
  return "\"" + rc + "\"";
}

std::vector<std::vector<int64_t>> flattenList(
    c10::List<c10::IValue> list,
    std::string fn_name) {
  std::vector<std::vector<int64_t>> tensor_dims;
  for (const c10::IValue input : list) {
    if (input.isTensor()) {
      const at::Tensor& tensor = input.toTensor();
      if (tensor.defined()) {
        tensor_dims.push_back(input.toTensor().sizes().vec());
      }
    }
  }
  return tensor_dims;
}

std::vector<std::vector<int64_t>> inputSizes(
    const at::RecordFunction& fn,
    bool flatten_list_enabled) {
  std::vector<std::vector<int64_t>> sizes;
  sizes.reserve(fn.inputs().size());
  for (const c10::IValue& input : fn.inputs()) {
    if (input.isTensor()) {
      const at::Tensor& tensor = input.toTensor();
      if (tensor.defined()) {
        sizes.push_back(input.toTensor().sizes().vec());
      } else {
        sizes.emplace_back();
      }
    } else if (input.isList()) {
      std::vector<std::vector<int64_t>> tmp_sizes;
      if (flatten_list_enabled) {
        tmp_sizes = flattenList(input.toList(), std::string(fn.name()));
      }
      // Extend the current sizes array by the array returned from input sizes
      if (!tmp_sizes.empty()) {
        sizes.insert(sizes.end(), tmp_sizes.begin(), tmp_sizes.end());
      } else {
        sizes.emplace_back();
      }
    } else {
      sizes.emplace_back();
    }
  }
  return sizes;
}

std::string shapesToStr(const std::vector<std::vector<int64_t>>& shapes) {
  std::string str("[");
  for (const auto t_idx : c10::irange(shapes.size())) {
    if (t_idx > 0) {
      str = fmt::format("{}, ", str);
    }
    str = fmt::format("{}[", str);
    for (const auto s_idx : c10::irange(shapes[t_idx].size())) {
      if (s_idx > 0) {
        str = fmt::format("{}, ", str);
      }
      str = fmt::format("{}{}", str, shapes[t_idx][s_idx]);
    }
    str = fmt::format("{}]", str);
  }
  str = fmt::format("{}]", str);
  return str;
}

std::string inputOpIdsToStr(
    const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids) {
  std::string str("[");
  int idx = 0;

  for (const auto& op_id_info_pair : input_op_ids) {
    if (idx++ > 0) {
      str = fmt::format("{}, ", str);
    }
    // (OpId,OutputNr)
    str = fmt::format(
        "{}({},{})", str, op_id_info_pair.first, op_id_info_pair.second);
  }
  str = fmt::format("{}]", str);
  return str;
}

std::string dtypesToStr(const std::vector<std::string>& types) {
  if (types.empty()) {
    return "[]";
  } else {
    std::ostringstream oss;
    std::transform(
        types.begin(),
        types.end(),
        std::ostream_iterator<std::string>(oss, ", "),
        [](std::string s) -> std::string { return "\"" + s + "\""; });
    auto rc = oss.str();
    rc.erase(rc.length() - 2); // remove last ", "
    return "[" + rc + "]";
  }
}

std::vector<std::string> inputTypes(const at::RecordFunction& fn) {
  std::vector<std::string> types;
  types.reserve(fn.inputs().size());
  for (const c10::IValue& input : fn.inputs()) {
    if (input.isTensor()) {
      const at::Tensor& tensor = input.toTensor();
      if (tensor.defined()) {
        types.push_back(
            static_cast<std::string>(input.toTensor().dtype().name()));
      } else {
        types.emplace_back();
      }
    } else if (input.isScalar() || input.isList()) {
      types.push_back(input.tagKind());
    } else {
      types.emplace_back();
    }
  }
  return types;
}

// ----------------------------------------------------------------------------
// -- FLOPS -------------------------------------------------------------------
// ----------------------------------------------------------------------------
static constexpr auto kConv2dStride = 3;
static constexpr auto kConv2dPadding = 4;
static constexpr auto kConv2dDilation = 5;
static constexpr auto kConv2dGroups = 6;

// List of supported operators
static constexpr auto kConv2dOp = "aten::conv2d";
static constexpr auto kMMOp = "aten::mm";
static constexpr auto kAddMMOp = "aten::addmm";
static constexpr auto kMulOp = "aten::mul";
static constexpr auto kAddOp = "aten::add";
static constexpr auto kBMMOp = "aten::bmm";
static constexpr auto kBAddBMMOp = "aten::baddbmm";

static constexpr auto kInputSize = "input_size";
static constexpr auto kWeightSize = "weight_size";
static constexpr auto kGroups = "groups";
static constexpr auto kPadding = "padding";
static constexpr auto kStride = "stride";
static constexpr auto kDilation = "dilation";
static constexpr auto kMatSize = "mat_size";
static constexpr auto kMat1Size = "mat1_size";
static constexpr auto kMat2Size = "mat2_size";

static bool validateInput(
    const std::string& op_name,
    size_t min_size,
    c10::ArrayRef<const c10::IValue> inputs,
    const c10::ArrayRef<int>& should_be_tensor) {
  std::stringstream ss;
  if (inputs.size() < min_size) {
    ss << "Failed to save extra arguments for flops compuation of op "
       << op_name << ", min size: " << min_size
       << ", actual size: " << inputs.size();
    TORCH_WARN(ss.str());
    return false;
  }
  for (auto index : should_be_tensor) {
    if (!inputs[index].isTensor()) {
      ss << "Failed to save extra arguments for flops compuation of op "
         << op_name << ", input[" << index << "] must be a tensor.";
      TORCH_WARN(ss.str());
      return false;
    }
  }
  return true;
}

std::unordered_map<std::string, c10::IValue> saveExtraArgs(
    const at::RecordFunction& fn) {
  // for specific types of fn, return the saved extra args for computing flops
  std::unordered_map<std::string, c10::IValue> map;
  auto inputs = fn.inputs();
  std::string fname(fn.name());

  if (inputs.empty()) {
    // Input shape is unavailable, return empty map
    return map;
  }

  if (fname == kConv2dOp) {
    bool check = validateInput(fname, kConv2dGroups + 1, inputs, {0, 1});
    if (!check) {
      return map;
    }

    at::Tensor input = inputs[0].toTensor();
    at::Tensor weight = inputs[1].toTensor();
    if (weight.sizes().size() != 4) {
      TORCH_WARN(
          "Failed to compute flops for op aten::conv2d because it requires a 4D kernel tensor.");
      return map;
    }
    map[kInputSize] = at::IValue(input.sizes());
    map[kWeightSize] = at::IValue(weight.sizes());
    map[kStride] = inputs[kConv2dStride];
    map[kPadding] = inputs[kConv2dPadding];
    map[kDilation] = inputs[kConv2dDilation];
    map[kGroups] = inputs[kConv2dGroups];
  } else if (fname == kMMOp) {
    bool check = validateInput(fname, 2, inputs, {0, 1});
    if (!check) {
      return map;
    }

    at::Tensor left = inputs[0].toTensor();
    at::Tensor right = inputs[1].toTensor();
    map[kMat1Size] = at::IValue(left.sizes());
    map[kMat2Size] = at::IValue(right.sizes());
  } else if (fname == kAddMMOp) {
    bool check = validateInput(fname, 3, inputs, {0, 1, 2});
    if (!check) {
      return map;
    }

    // Exact FLOP count depends on scaling factors alpha and beta but
    // just assume these are +=1.
    // (similar to http://www.netlib.org/lapack/lawnspdf/lawn41.pdf,
    // "Operations Count for the BLAS and LAPACK", Table 3, SGEMM)
    at::Tensor left = inputs[1].toTensor();
    at::Tensor right = inputs[2].toTensor();
    map[kMat1Size] = at::IValue(left.sizes());
    map[kMat2Size] = at::IValue(right.sizes());
  } else if (fname == kMulOp) {
    bool check = validateInput(fname, 1, inputs, {0});
    if (!check) {
      return map;
    }

    at::Tensor mat = inputs[0].toTensor();
    map[kMatSize] = at::IValue(mat.sizes());
  } else if (fname == kAddOp) {
    bool check = validateInput(fname, 1, inputs, {0});
    if (!check) {
      return map;
    }

    at::Tensor mat = inputs[0].toTensor();
    map[kMatSize] = at::IValue(mat.sizes());
  } else if (fname == kBMMOp) {
    bool check = validateInput(fname, 2, inputs, {0, 1});
    if (!check) {
      return map;
    }

    at::Tensor left = inputs[0].toTensor();
    at::Tensor right = inputs[1].toTensor();
    map[kMat1Size] = at::IValue(left.sizes());
    map[kMat2Size] = at::IValue(right.sizes());
  } else if (fname == kBAddBMMOp) {
    bool check = validateInput(fname, 3, inputs, {0, 1, 2});
    if (!check) {
      return map;
    }

    // Exact FLOP count depends on scaling factors alpha and beta but
    // just assume these are +=1.
    // (similar to http://www.netlib.org/lapack/lawnspdf/lawn41.pdf,
    // "Operations Count for the BLAS and LAPACK", Table 3, SGEMM)
    at::Tensor left = inputs[1].toTensor();
    at::Tensor right = inputs[2].toTensor();
    map[kMat1Size] = at::IValue(left.sizes());
    map[kMat2Size] = at::IValue(right.sizes());
  }

  return map;
}

uint64_t computeFlops(
    const std::string& op_name,
    const std::unordered_map<std::string, c10::IValue>& extra_args) {
  if (op_name == kConv2dOp) {
    if (extra_args.find(kInputSize) == extra_args.end() ||
        extra_args.find(kWeightSize) == extra_args.end() ||
        extra_args.find(kGroups) == extra_args.end() ||
        extra_args.find(kPadding) == extra_args.end() ||
        extra_args.find(kStride) == extra_args.end() ||
        extra_args.find(kDilation) == extra_args.end()) {
      TORCH_WARN(
          "Calculating flops for aten::conv2d requires groups, padding, stride, dilation, input_size, and weight_size in saved arguments.");
      return 0;
    }
    auto input_sizes_ref = extra_args.at(kInputSize);
    auto kernel_sizes_ref = extra_args.at(kWeightSize);
    auto groups_ref = extra_args.at(kGroups);
    auto padding_ref = extra_args.at(kPadding);
    auto stride_ref = extra_args.at(kStride);
    auto dilation_ref = extra_args.at(kDilation);
    if (!input_sizes_ref.isIntList() || !kernel_sizes_ref.isIntList()) {
      TORCH_WARN(
          "Failed to compute flops for op aten::conv2d because it requires input and weight tensor sizes.");
      return 0;
    }
    if (!padding_ref.isIntList() || !stride_ref.isIntList() ||
        !dilation_ref.isIntList()) {
      TORCH_WARN(
          "Failed to compute flops for op aten::conv2d because it requires padding, stride, and dilation values.");
      return 0;
    }

    const auto input_sizes = input_sizes_ref.toDimVector();
    const auto kernel_sizes = kernel_sizes_ref.toDimVector();
    const uint64_t groups = groups_ref.toInt();
    const std::vector<int64_t> padding = padding_ref.toIntVector();
    const std::vector<int64_t> stride = stride_ref.toIntVector();
    const std::vector<int64_t> dilation = dilation_ref.toIntVector();
    if (input_sizes.size() != 4 || kernel_sizes.size() != 4) {
      TORCH_WARN(
          "Failed to compute flops for op aten::conv2d because both input and weight must be size 4.");
      return 0;
    }
    if (!groups) {
      TORCH_WARN(
          "Failed to compute flops for op aten::conv2d because group size must not be 0.");
      return 0;
    }
    if (padding.size() != 2 || dilation.size() != 2) {
      TORCH_WARN(
          "Failed to compute flops for op aten::conv2d because both padding and dilation must be size 2.");
      return 0;
    }
    if (stride.size() != 2 || (stride[0] * stride[1] == 0)) {
      TORCH_WARN(
          "Failed to compute flops for op aten::conv2d because stride must be size 2 and cannot be 0.");
      return 0;
    }
    // format of the input is defined in
    // torch.ao.nn.quantized.functional.conv2d()
    uint64_t minibatch = 0, in_channels = 0, input_h = 0, input_w = 0;
    uint64_t out_channels = 0, kernel_h = 0, kernel_w = 0;
    const uint64_t conv2d_multiply_factor = 2;
    std::tie(minibatch, in_channels, input_h, input_w) = std::make_tuple(
        input_sizes[0], input_sizes[1], input_sizes[2], input_sizes[3]);
    std::tie(out_channels, std::ignore, kernel_h, kernel_w) = std::make_tuple(
        kernel_sizes[0], kernel_sizes[1], kernel_sizes[2], kernel_sizes[3]);
    uint64_t output_h =
        (input_h + 2 * padding[0] - dilation[0] * (kernel_h - 1) - 1) /
            stride[0] +
        1;
    uint64_t output_w =
        (input_w + 2 * padding[1] - dilation[1] * (kernel_w - 1) - 1) /
            stride[1] +
        1;

    return conv2d_multiply_factor * minibatch * output_h * output_w * kernel_h *
        kernel_w * in_channels * out_channels / groups;
  } else if (op_name == kMMOp || op_name == kAddMMOp) {
    if (extra_args.find(kMat1Size) == extra_args.end() ||
        extra_args.find(kMat2Size) == extra_args.end()) {
      TORCH_WARN(
          "Calculating flops for ",
          op_name,
          " requires mat1_size and mat2_size in saved arguments.");
      return 0;
    }
    auto mat1_sizes_ref = extra_args.at(kMat1Size);
    auto mat2_sizes_ref = extra_args.at(kMat2Size);
    if (!mat1_sizes_ref.isIntList() || !mat2_sizes_ref.isIntList()) {
      TORCH_WARN(
          "Failed to compute flops for op ",
          op_name,
          " because it requires mat1_size and mat2_size to be IntList.");
      return 0;
    }

    const auto mat1_size = mat1_sizes_ref.toDimVector();
    const auto mat2_size = mat2_sizes_ref.toDimVector();
    if (mat1_size.size() == 0) {
      return 0;
    }

    int64_t overlap_dim = mat1_size.back();
    if (overlap_dim == 0) {
      return 0;
    }

    const uint64_t gemm_multiply_factor = 2;
    uint64_t flops = 1;
    for (int64_t dim : mat1_size) {
      flops *= dim;
    }
    flops /= overlap_dim;
    for (int64_t dim : mat2_size) {
      flops *= dim;
    }
    flops *= gemm_multiply_factor;
    return flops;
  } else if (op_name == kBMMOp || op_name == kBAddBMMOp) {
    if (extra_args.find(kMat1Size) == extra_args.end() ||
        extra_args.find(kMat2Size) == extra_args.end()) {
      TORCH_WARN(
          "Calculating flops for ",
          op_name,
          " requires mat1_size and mat2_size in saved arguments.");
      return 0;
    }
    auto mat1_sizes_ref = extra_args.at(kMat1Size);
    auto mat2_sizes_ref = extra_args.at(kMat2Size);
    if (!mat1_sizes_ref.isIntList() || !mat2_sizes_ref.isIntList()) {
      TORCH_WARN(
          "Failed to compute flops for op ",
          op_name,
          " because it requires mat1_size and mat2_size to be IntList.");
      return 0;
    }

    const auto mat1_size = mat1_sizes_ref.toDimVector();
    const auto mat2_size = mat2_sizes_ref.toDimVector();
    if (mat1_size.size() == 0) {
      return 0;
    }

    int64_t batch_size = mat1_size.front();
    if (batch_size == 0) {
      return 0;
    }

    int64_t overlap_dim = mat1_size.back();
    if (overlap_dim == 0) {
      return 0;
    }

    const uint64_t gemm_multiply_factor = 2;
    uint64_t flops = 1;
    for (int64_t dim : mat1_size) {
      flops *= dim;
    }
    flops /= overlap_dim;
    flops /= batch_size;
    for (int64_t dim : mat2_size) {
      flops *= dim;
    }
    flops *= gemm_multiply_factor;
    return flops;
  } else if (op_name == kMulOp) {
    if (extra_args.find(kMatSize) == extra_args.end()) {
      TORCH_WARN(
          "Calculating flops for aten::mul.Tensor requires mat_size in saved arguments.");
      return 0;
    }
    auto mat_sizes = extra_args.at(kMatSize);
    if (!mat_sizes.isIntList()) {
      TORCH_WARN(
          "Failed to compute flops for op aten::mul because it requires mat_size to be IntList.");
      return 0;
    }

    const auto mat_size = mat_sizes.toDimVector();
    uint64_t flops = 1;
    for (int64_t dim : mat_size) {
      flops *= dim;
    }
    return flops;
  } else if (op_name == kAddOp) {
    if (extra_args.find(kMatSize) == extra_args.end()) {
      TORCH_WARN(
          "Calculating flops for aten::add.Tensor requires mat_size in saved arguments.");
      return 0;
    }
    auto mat_sizes = extra_args.at(kMatSize);
    if (!mat_sizes.isIntList()) {
      TORCH_WARN(
          "Failed to compute flops for op aten::add because it requires mat_size to be IntList.");
      return 0;
    }

    const auto mat_size = mat_sizes.toDimVector();
    uint64_t flops = 1;
    for (int64_t dim : mat_size) {
      flops *= dim;
    }
    return flops;
  }
  return 0;
}

} // namespace impl
} // namespace profiler
} // namespace torch