File: cuda_lazy_init.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (33 lines) | stat: -rw-r--r-- 1,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#pragma once

#include <c10/core/TensorOptions.h>

// cuda_lazy_init() is always compiled, even for CPU-only builds.
// Thus, it does not live in the cuda/ folder.

namespace torch {
namespace utils {

// The INVARIANT is that this function MUST be called before you attempt
// to get a CUDA Type object from ATen, in any way.  Here are some common
// ways that a Type object may be retrieved:
//
//    - You call getNonVariableType or getNonVariableTypeOpt
//    - You call toBackend() on a Type
//
// It's important to do this correctly, because if you forget to add it
// you'll get an oblique error message about "Cannot initialize CUDA without
// ATen_cuda library" if you try to use CUDA functionality from a CPU-only
// build, which is not good UX.
//
void cuda_lazy_init();
void set_requires_cuda_init(bool value);

static void maybe_initialize_cuda(const at::TensorOptions& options) {
  if (options.device().is_cuda()) {
    torch::utils::cuda_lazy_init();
  }
}

} // namespace utils
} // namespace torch