File: disable_torch_function.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (291 lines) | stat: -rw-r--r-- 9,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_strings.h>

#include <ATen/PythonTorchFunctionTLS.h>

namespace torch {
PyObject* disabled_torch_function = nullptr;
PyObject* disabled_torch_dispatch = nullptr;

bool torch_function_enabled() {
  return !at::impl::PythonTorchFunctionTLS::is_disabled();
}

PyObject* disabled_torch_function_impl() {
  return disabled_torch_function;
}

void set_disabled_torch_function_impl(PyObject* value) {
  disabled_torch_function = value;
}

PyObject* disabled_torch_dispatch_impl() {
  return disabled_torch_dispatch;
}

void set_disabled_torch_dispatch_impl(PyObject* value) {
  disabled_torch_dispatch = value;
}
} // namespace torch

typedef struct {
  PyObject_HEAD
      /* Type-specific fields go here. */
      bool old_state;
} DisableTorchFunction;

PyObject* DisableTorchFunction__enter(PyObject* self, PyObject* unused) {
  ((DisableTorchFunction*)self)->old_state =
      at::impl::PythonTorchFunctionTLS::is_disabled();
  at::impl::PythonTorchFunctionTLS::set_disabled(true);
  Py_RETURN_NONE;
}

PyObject* DisableTorchFunction__exit(PyObject* self, PyObject* unused) {
  at::impl::PythonTorchFunctionTLS::set_disabled(
      ((DisableTorchFunction*)self)->old_state);
  Py_RETURN_NONE;
}

PyObject* THPModule_isEnabledTorchFunction(PyObject* self, PyObject* unused) {
  if (torch::torch_function_enabled()) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
}

static PyMethodDef DisableTorchFunction_methods[] = { // NOLINT
    {"__enter__", DisableTorchFunction__enter, METH_NOARGS, nullptr},
    {"__exit__", DisableTorchFunction__exit, METH_VARARGS, nullptr},
    {nullptr, nullptr, 0, nullptr}};

PyTypeObject DisableTorchFunctionType = {
    PyVarObject_HEAD_INIT(
        nullptr,
        0) "torch._C.DisableTorchFunction", /* tp_name */
    sizeof(DisableTorchFunction), /* tp_basicsize */
    0, /* tp_itemsize */
    nullptr, /* tp_dealloc */
    0, /* tp_vectorcall_offset */
    nullptr, /* tp_getattr */
    nullptr, /* tp_setattr */
    nullptr, /* tp_reserved */
    nullptr, /* tp_repr */
    nullptr, /* tp_as_number */
    nullptr, /* tp_as_sequence */
    nullptr, /* tp_as_mapping */
    nullptr, /* tp_hash  */
    nullptr, /* tp_call */
    nullptr, /* tp_str */
    nullptr, /* tp_getattro */
    nullptr, /* tp_setattro */
    nullptr, /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT, /* tp_flags */
    nullptr, /* tp_doc */
    nullptr, /* tp_traverse */
    nullptr, /* tp_clear */
    nullptr, /* tp_richcompare */
    0, /* tp_weaklistoffset */
    nullptr, /* tp_iter */
    nullptr, /* tp_iternext */
    DisableTorchFunction_methods, /* tp_methods */
    nullptr, /* tp_members */
    nullptr, /* tp_getset */
    nullptr, /* tp_base */
    nullptr, /* tp_dict */
    nullptr, /* tp_descr_get */
    nullptr, /* tp_descr_set */
    0, /* tp_dictoffset */
    nullptr, /* tp_init */
    PyType_GenericAlloc, /* tp_alloc */
    PyType_GenericNew, /* tp_new */
};

PyObject* THPModule_DisableTorchFunctionType() {
  if (PyType_Ready(&DisableTorchFunctionType) < 0) {
    return nullptr;
  }

  return (PyObject*)(&DisableTorchFunctionType);
}

PyObject* THPModule_disable_torch_function(PyObject* self, PyObject* a) {
  HANDLE_TH_ERRORS
  PyObject *func = nullptr, *types = nullptr, *args = nullptr,
           *kwargs = nullptr;
  if (!PyArg_ParseTuple(a, "OO|OO", &func, &types, &args, &kwargs)) {
    return nullptr;
  }
  py::tuple py_args;
  if (args == nullptr) {
    py_args = py::make_tuple();
  } else if (PyList_Check(args)) {
    py_args = py::reinterpret_steal<py::tuple>(PyList_AsTuple(args));
  } else if (PyTuple_Check(args)) {
    py_args = py::reinterpret_borrow<py::tuple>(args);
  } else {
    throw torch::TypeError(
        "expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
  }

  // These are all C-API calls so no exceptions will be raised
  // and therefore no need for RAII approach to storing
  // the old value.
  bool old_value = at::impl::PythonTorchFunctionTLS::is_disabled();
  at::impl::PythonTorchFunctionTLS::set_disabled(true);
  // kwargs can safely be nullptr here.
  PyObject* result = PyObject_Call(func, py_args.ptr(), kwargs);
  at::impl::PythonTorchFunctionTLS::set_disabled(old_value);
  return result;
  END_HANDLE_TH_ERRORS
}

PyObject* THPModule_disable_torch_dispatch(PyObject* self, PyObject* a) {
  HANDLE_TH_ERRORS
  PyObject *func = nullptr, *types = nullptr, *args = nullptr,
           *kwargs = nullptr;
  if (!PyArg_ParseTuple(a, "OO|OO", &func, &types, &args, &kwargs)) {
    return nullptr;
  }
  py::tuple py_args;
  if (args == nullptr) {
    py_args = py::make_tuple();
  } else if (PyList_Check(args)) {
    py_args = py::reinterpret_steal<py::tuple>(PyList_AsTuple(args));
  } else if (PyTuple_Check(args)) {
    py_args = py::reinterpret_borrow<py::tuple>(args);
  } else {
    throw torch::TypeError(
        "expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
  }

  // This implementation is not completely correct.  The moral
  // meaning of this function is that we should do a redispatch
  // "after" PythonKey, aka a redispatch() call.  But we don't have a
  // dispatcher call here; we have an opaque Python object.
  //
  // What we have here is a close approximation: instead of redispatch(), we
  // just exclude Python and all the keys before it, so that we will go
  // to the next key after Python.  The difference, however, is we are
  // now PERMANENTLY after Python.  We don't think there are any legitimate
  // cases where we want to go for another round on the entire dispatcher key
  // set, but if there are, then we will have to do something else here.
  c10::impl::ExcludeDispatchKeyGuard guard_(
      // TODO: add constructor for this specifically
      c10::DispatchKeySet(c10::DispatchKeySet::FULL) -
      c10::DispatchKeySet(
          c10::DispatchKeySet::FULL_AFTER, c10::DispatchKey::Python)
      // NB: off by one hazard here, but it works out: python key is not
      // included in AFTER, so it is included in the negation (and that's
      // correct: we want to exclude Python key and everything BEFORE it.)
  );
  auto r = PyObject_Call(func, py_args.ptr(), kwargs);
  if (r == nullptr)
    throw python_error();
  return r;
  END_HANDLE_TH_ERRORS
}

// Makes sure that we don't check for __torch_function__ on basic Python types
static bool is_basic_python_type(PyTypeObject* tp) {
  return (
      /* Basic number types */
      tp == &PyBool_Type ||

      tp == &PyLong_Type || tp == &PyFloat_Type || tp == &PyComplex_Type ||

      /* Basic sequence types */
      tp == &PyList_Type || tp == &PyTuple_Type || tp == &PyDict_Type ||
      tp == &PySet_Type || tp == &PyFrozenSet_Type || tp == &PyUnicode_Type ||
      tp == &PyBytes_Type ||

      /* other builtins */
      tp == &PySlice_Type || tp == Py_TYPE(Py_None) ||
      tp == Py_TYPE(Py_Ellipsis) || tp == Py_TYPE(Py_NotImplemented) ||

      PyModule_Check(tp) ||
      /* sentinel to swallow trailing || */
      false);
}

inline bool has_torch_function_attr(PyObject* obj) {
  // NOLINTNEXTLINE(clang-diagnostic-writable-strings)
  auto attr = PyObject_FastGetAttrString(obj, "__torch_function__");
  return (
      attr.ptr() != nullptr && attr.ptr() != torch::disabled_torch_function);
}

namespace torch {
auto check_has_torch_function(PyObject* obj, bool ignore_mode) -> bool {
  if (!ignore_mode && at::impl::PythonTorchFunctionTLS::get_mode())
    return true;
  PyTypeObject* tp = Py_TYPE(obj);
  return (
      !THPVariable_CheckTypeExact(tp) && !is_basic_python_type(tp) &&
      torch::torch_function_enabled() && has_torch_function_attr(obj));
}
} // namespace torch

inline bool sequence_has_torch_function(PyObject* args) {
  // NOLINTNEXTLINE(bugprone-branch-clone)
  Py_ssize_t nargs = PySequence_Fast_GET_SIZE(args);
  for (Py_ssize_t i = 0; i < nargs; i++) {
    PyObject* obj = PySequence_Fast_GET_ITEM(args, i);
    if (torch::check_has_torch_function(obj)) {
      return true;
    }
  }
  return false;
}

inline bool array_has_torch_function(PyObject* const* args, Py_ssize_t nargs) {
  for (Py_ssize_t i = 0; i < nargs; i++) {
    if (torch::check_has_torch_function(args[i])) {
      return true;
    }
  }
  return false;
}

PyObject* THPModule_has_torch_function(PyObject*, PyObject* arg) {
  bool result; // NOLINT(cppcoreguidelines-init-variables)
  if (PyTuple_CheckExact(arg) || PyList_CheckExact(arg)) {
    // Fast path:
    //   If we know that we have a tuple or list, we can skip an INCREF and
    //   DECREF from PySequence_Fast. Core functions will always follow this
    //   convention (almost always tuples), and it shaves ~3.5% off the cost of
    //   the check.
    result = sequence_has_torch_function(arg);
  } else {
    auto args = py::reinterpret_steal<py::object>(
        PySequence_Fast(arg, "expected a sequence"));
    result = sequence_has_torch_function(args.ptr());
  }

  if (result) {
    Py_RETURN_TRUE;
  }
  Py_RETURN_FALSE;
}

PyObject* THPModule_has_torch_function_unary(PyObject*, PyObject* obj) {
  // Special case `THPModule_has_torch_function` for the single arg case.
  if (torch::check_has_torch_function(obj)) {
    Py_RETURN_TRUE;
  }
  Py_RETURN_FALSE;
}

PyObject* THPModule_has_torch_function_variadic(
    PyObject*,
    PyObject* const* args,
    Py_ssize_t nargs) {
  if (array_has_torch_function(args, nargs)) {
    Py_RETURN_TRUE;
  }
  Py_RETURN_FALSE;
}