1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_strings.h>
#include <ATen/PythonTorchFunctionTLS.h>
namespace torch {
PyObject* disabled_torch_function = nullptr;
PyObject* disabled_torch_dispatch = nullptr;
bool torch_function_enabled() {
return !at::impl::PythonTorchFunctionTLS::is_disabled();
}
PyObject* disabled_torch_function_impl() {
return disabled_torch_function;
}
void set_disabled_torch_function_impl(PyObject* value) {
disabled_torch_function = value;
}
PyObject* disabled_torch_dispatch_impl() {
return disabled_torch_dispatch;
}
void set_disabled_torch_dispatch_impl(PyObject* value) {
disabled_torch_dispatch = value;
}
} // namespace torch
typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */
bool old_state;
} DisableTorchFunction;
PyObject* DisableTorchFunction__enter(PyObject* self, PyObject* unused) {
((DisableTorchFunction*)self)->old_state =
at::impl::PythonTorchFunctionTLS::is_disabled();
at::impl::PythonTorchFunctionTLS::set_disabled(true);
Py_RETURN_NONE;
}
PyObject* DisableTorchFunction__exit(PyObject* self, PyObject* unused) {
at::impl::PythonTorchFunctionTLS::set_disabled(
((DisableTorchFunction*)self)->old_state);
Py_RETURN_NONE;
}
PyObject* THPModule_isEnabledTorchFunction(PyObject* self, PyObject* unused) {
if (torch::torch_function_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
static PyMethodDef DisableTorchFunction_methods[] = { // NOLINT
{"__enter__", DisableTorchFunction__enter, METH_NOARGS, nullptr},
{"__exit__", DisableTorchFunction__exit, METH_VARARGS, nullptr},
{nullptr, nullptr, 0, nullptr}};
PyTypeObject DisableTorchFunctionType = {
PyVarObject_HEAD_INIT(
nullptr,
0) "torch._C.DisableTorchFunction", /* tp_name */
sizeof(DisableTorchFunction), /* tp_basicsize */
0, /* tp_itemsize */
nullptr, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
DisableTorchFunction_methods, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
};
PyObject* THPModule_DisableTorchFunctionType() {
if (PyType_Ready(&DisableTorchFunctionType) < 0) {
return nullptr;
}
return (PyObject*)(&DisableTorchFunctionType);
}
PyObject* THPModule_disable_torch_function(PyObject* self, PyObject* a) {
HANDLE_TH_ERRORS
PyObject *func = nullptr, *types = nullptr, *args = nullptr,
*kwargs = nullptr;
if (!PyArg_ParseTuple(a, "OO|OO", &func, &types, &args, &kwargs)) {
return nullptr;
}
py::tuple py_args;
if (args == nullptr) {
py_args = py::make_tuple();
} else if (PyList_Check(args)) {
py_args = py::reinterpret_steal<py::tuple>(PyList_AsTuple(args));
} else if (PyTuple_Check(args)) {
py_args = py::reinterpret_borrow<py::tuple>(args);
} else {
throw torch::TypeError(
"expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
}
// These are all C-API calls so no exceptions will be raised
// and therefore no need for RAII approach to storing
// the old value.
bool old_value = at::impl::PythonTorchFunctionTLS::is_disabled();
at::impl::PythonTorchFunctionTLS::set_disabled(true);
// kwargs can safely be nullptr here.
PyObject* result = PyObject_Call(func, py_args.ptr(), kwargs);
at::impl::PythonTorchFunctionTLS::set_disabled(old_value);
return result;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_disable_torch_dispatch(PyObject* self, PyObject* a) {
HANDLE_TH_ERRORS
PyObject *func = nullptr, *types = nullptr, *args = nullptr,
*kwargs = nullptr;
if (!PyArg_ParseTuple(a, "OO|OO", &func, &types, &args, &kwargs)) {
return nullptr;
}
py::tuple py_args;
if (args == nullptr) {
py_args = py::make_tuple();
} else if (PyList_Check(args)) {
py_args = py::reinterpret_steal<py::tuple>(PyList_AsTuple(args));
} else if (PyTuple_Check(args)) {
py_args = py::reinterpret_borrow<py::tuple>(args);
} else {
throw torch::TypeError(
"expected List or Tuple (got %s)", Py_TYPE(args)->tp_name);
}
// This implementation is not completely correct. The moral
// meaning of this function is that we should do a redispatch
// "after" PythonKey, aka a redispatch() call. But we don't have a
// dispatcher call here; we have an opaque Python object.
//
// What we have here is a close approximation: instead of redispatch(), we
// just exclude Python and all the keys before it, so that we will go
// to the next key after Python. The difference, however, is we are
// now PERMANENTLY after Python. We don't think there are any legitimate
// cases where we want to go for another round on the entire dispatcher key
// set, but if there are, then we will have to do something else here.
c10::impl::ExcludeDispatchKeyGuard guard_(
// TODO: add constructor for this specifically
c10::DispatchKeySet(c10::DispatchKeySet::FULL) -
c10::DispatchKeySet(
c10::DispatchKeySet::FULL_AFTER, c10::DispatchKey::Python)
// NB: off by one hazard here, but it works out: python key is not
// included in AFTER, so it is included in the negation (and that's
// correct: we want to exclude Python key and everything BEFORE it.)
);
auto r = PyObject_Call(func, py_args.ptr(), kwargs);
if (r == nullptr)
throw python_error();
return r;
END_HANDLE_TH_ERRORS
}
// Makes sure that we don't check for __torch_function__ on basic Python types
static bool is_basic_python_type(PyTypeObject* tp) {
return (
/* Basic number types */
tp == &PyBool_Type ||
tp == &PyLong_Type || tp == &PyFloat_Type || tp == &PyComplex_Type ||
/* Basic sequence types */
tp == &PyList_Type || tp == &PyTuple_Type || tp == &PyDict_Type ||
tp == &PySet_Type || tp == &PyFrozenSet_Type || tp == &PyUnicode_Type ||
tp == &PyBytes_Type ||
/* other builtins */
tp == &PySlice_Type || tp == Py_TYPE(Py_None) ||
tp == Py_TYPE(Py_Ellipsis) || tp == Py_TYPE(Py_NotImplemented) ||
PyModule_Check(tp) ||
/* sentinel to swallow trailing || */
false);
}
inline bool has_torch_function_attr(PyObject* obj) {
// NOLINTNEXTLINE(clang-diagnostic-writable-strings)
auto attr = PyObject_FastGetAttrString(obj, "__torch_function__");
return (
attr.ptr() != nullptr && attr.ptr() != torch::disabled_torch_function);
}
namespace torch {
auto check_has_torch_function(PyObject* obj, bool ignore_mode) -> bool {
if (!ignore_mode && at::impl::PythonTorchFunctionTLS::get_mode())
return true;
PyTypeObject* tp = Py_TYPE(obj);
return (
!THPVariable_CheckTypeExact(tp) && !is_basic_python_type(tp) &&
torch::torch_function_enabled() && has_torch_function_attr(obj));
}
} // namespace torch
inline bool sequence_has_torch_function(PyObject* args) {
// NOLINTNEXTLINE(bugprone-branch-clone)
Py_ssize_t nargs = PySequence_Fast_GET_SIZE(args);
for (Py_ssize_t i = 0; i < nargs; i++) {
PyObject* obj = PySequence_Fast_GET_ITEM(args, i);
if (torch::check_has_torch_function(obj)) {
return true;
}
}
return false;
}
inline bool array_has_torch_function(PyObject* const* args, Py_ssize_t nargs) {
for (Py_ssize_t i = 0; i < nargs; i++) {
if (torch::check_has_torch_function(args[i])) {
return true;
}
}
return false;
}
PyObject* THPModule_has_torch_function(PyObject*, PyObject* arg) {
bool result; // NOLINT(cppcoreguidelines-init-variables)
if (PyTuple_CheckExact(arg) || PyList_CheckExact(arg)) {
// Fast path:
// If we know that we have a tuple or list, we can skip an INCREF and
// DECREF from PySequence_Fast. Core functions will always follow this
// convention (almost always tuples), and it shaves ~3.5% off the cost of
// the check.
result = sequence_has_torch_function(arg);
} else {
auto args = py::reinterpret_steal<py::object>(
PySequence_Fast(arg, "expected a sequence"));
result = sequence_has_torch_function(args.ptr());
}
if (result) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_has_torch_function_unary(PyObject*, PyObject* obj) {
// Special case `THPModule_has_torch_function` for the single arg case.
if (torch::check_has_torch_function(obj)) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_has_torch_function_variadic(
PyObject*,
PyObject* const* args,
Py_ssize_t nargs) {
if (array_has_torch_function(args, nargs)) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
|