File: pybind.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (259 lines) | stat: -rw-r--r-- 8,385 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#pragma once

#include <torch/csrc/python_headers.h>

#include <ATen/core/Tensor.h>
#include <ATen/core/jit_type_base.h>
#include <c10/util/irange.h>
#include <c10/util/variant.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

#include <torch/csrc/Device.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/utils/tensor_memoryformats.h>

#include <stdexcept>
#include <utility>

namespace py = pybind11;

// This makes intrusive_ptr to be available as a custom pybind11 holder type,
// see
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr<T>, true);

PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr<T>);
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr<T>, true);

namespace pybind11 {
namespace detail {

// torch.Tensor <-> at::Tensor conversions (without unwrapping)
template <>
struct TORCH_PYTHON_API type_caster<at::Tensor> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Tensor, _("at::Tensor"));

  bool load(handle src, bool);

  static handle cast(
      const at::Tensor& src,
      return_value_policy /* policy */,
      handle /* parent */);
};

// torch._StorageBase <-> at::Storage
template <>
struct type_caster<at::Storage> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Storage, _("at::Storage"));

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (torch::isStorage(obj)) {
      value = torch::createStorage(obj);
      return true;
    }
    return false;
  }

  static handle cast(
      const at::Storage& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(torch::createPyObject(src));
  }
};

template <>
struct type_caster<at::Generator> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Generator, _("at::Generator"));

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPGenerator_Check(obj)) {
      value = reinterpret_cast<THPGenerator*>(obj)->cdata;
      return true;
    }
    return false;
  }

  static handle cast(
      const at::Generator& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(THPGenerator_Wrap(src));
  }
};

template <>
struct TORCH_PYTHON_API type_caster<at::IntArrayRef> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::IntArrayRef, _("at::IntArrayRef"));

  bool load(handle src, bool);
  static handle cast(
      at::IntArrayRef src,
      return_value_policy /* policy */,
      handle /* parent */);

 private:
  std::vector<int64_t> v_value;
};

template <>
struct TORCH_PYTHON_API type_caster<at::MemoryFormat> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::MemoryFormat, _("at::MemoryFormat"));

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPMemoryFormat_Check(obj)) {
      value = reinterpret_cast<THPMemoryFormat*>(obj)->memory_format;
      return true;
    }
    return false;
  }
  static handle cast(
      at::MemoryFormat src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(torch::utils::getTHPMemoryFormat(src));
  }
};

template <>
struct type_caster<at::Device> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Device, _("at::Device"));

  // PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device
  // cannot be default-initialized, we provide this constructor to explicitly
  // initialize that field. The value doesn't matter as it will be overwritten
  // after a successful call to load.
  type_caster() : value(c10::kCPU) {}

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPDevice_Check(obj)) {
      value = reinterpret_cast<THPDevice*>(obj)->device;
      return true;
    }
    return false;
  }

  static handle cast(
      const at::Device& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(THPDevice_New(src));
  }
};

template <>
struct type_caster<c10::DispatchKey>
    : public type_caster_base<c10::DispatchKey> {
  using base = type_caster_base<c10::DispatchKey>;
  c10::DispatchKey tmp;

 public:
  bool load(handle src, bool convert) {
    if (base::load(src, convert)) {
      return true;
    } else if (py::isinstance(
                   src, py::module_::import("builtins").attr("str"))) {
      tmp = c10::parseDispatchKey(py::cast<std::string>(src));
      value = &tmp;
      return true;
    }
    return false;
  }

  static handle cast(
      c10::DispatchKey src,
      return_value_policy policy,
      handle parent) {
    return base::cast(src, policy, parent);
  }
};

// Pybind11 bindings for our optional and variant types.
// http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers
template <typename T>
struct type_caster<c10::optional<T>> : optional_caster<c10::optional<T>> {};

template <typename... Ts>
struct C10_MPARK_VISIBILITY_HIDDEN type_caster<c10::variant<Ts...>>
    : variant_caster<c10::variant<Ts...>> {};
} // namespace detail
} // namespace pybind11

namespace torch {
namespace impl {

// Use this function if you have a C++ object that is used from both C++
// and Python contexts, and you need its GIL to be released when you
// destruct it in the Python context.
//
// This function is a valid shared_ptr destructor and can be used to
// conveniently allocate a shared_ptr to an object whose destructor will be run
// without the GIL.  Pass it as the second argument to shared_ptr, e.g.,
//
//    shared_ptr<T>(new T(), destroy_without_gil<T>)
//
// Attaching the GIL release logic to the holder pointer rather than the
// actual destructor of T is helpful when T is Python-agnostic and
// shouldn't refer to the PYthon API.
//
// Note there are limitations to the correctness of code that makes use of this.
// In particular, if a shared_ptr is constructed from C++ code without this
// destructor and then passed to pybind11, pybind11 will happily take ownership
// of the shared_ptr (and be willing to destruct it from a context where it is
// holding the GIL).  unique_ptr with a type branded deleter is less prone to
// this problem, because a stock deleter unique_ptr is not convertible with it.
// I plan to mitigate this problem by adding DEBUG-only asserts to the true C++
// destructors that the GIL is not held (using a virtual call to get to the
// Python interpreter); alternately, we could use a virtual call to simply
// ensure we release the GIL in the C++ destructor, however, this is a layering
// violation (why does code that is ostensibly Python agnostic calling into the
// GIL).
//
// Adapted from
// https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510
template <typename T>
inline void destroy_without_gil(T* ptr) {
  // Because the ownership of a shared_ptr is diffuse, it's not possible to
  // necessarily predict whether or not the last reference to an object will
  // be destructed from Python or C++.  This means that in the destructor here,
  // we don't necessarily know if we actually have the GIL or not; in fact,
  // we don't even know if the Python interpreter still exists!  Thus, we have
  // to test for it before releasing the GIL.
  //
  // PyGILState_Check is hopefully self explanatory.  But Py_IsInitialized or
  // _PyIsFinalizing?  Both get set at the same time during the Python
  // destruction process:
  // https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717
  // so the operant question is whether or not you want to release the GIL after
  // finalization has completed (and there is just no Python interpreter).
  // Clearly there is no need to release GIL in that state, so we want
  // Py_IsInitialized.
  if (Py_IsInitialized() && PyGILState_Check()) {
    pybind11::gil_scoped_release nogil;
    delete ptr;
  } else {
    delete ptr;
  }
}

} // namespace impl
} // namespace torch