File: python_arg_parser.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1580 lines) | stat: -rw-r--r-- 50,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
#include <torch/csrc/utils/python_arg_parser.h>

#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/invalid_arguments.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_torch_function_mode.h>
#include <torch/csrc/utils/torch_dispatch_mode.h>

#include <ATen/ATen.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/TracerMode.h>
#include <c10/util/irange.h>

#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>

namespace torch {

static std::unordered_map<std::string, ParameterType> type_map = {
    {"Tensor", ParameterType::TENSOR},
    {"Scalar", ParameterType::SCALAR},
    {"int64_t", ParameterType::INT64},
    {"double", ParameterType::DOUBLE},
    {"complex", ParameterType::COMPLEX},
    {"TensorList", ParameterType::TENSOR_LIST},
    {"c10::List<c10::optional<Tensor>>", ParameterType::TENSOR_LIST},
    {"IntArrayRef", ParameterType::INT_LIST},
    {"ArrayRef<double>", ParameterType::FLOAT_LIST},
    {"Generator", ParameterType::GENERATOR},
    {"bool", ParameterType::BOOL},
    {"Storage", ParameterType::STORAGE},
    {"PyObject*", ParameterType::PYOBJECT},
    {"ScalarType", ParameterType::SCALARTYPE},
    {"Layout", ParameterType::LAYOUT},
    {"MemoryFormat", ParameterType::MEMORY_FORMAT},
    {"QScheme", ParameterType::QSCHEME},
    {"Device", ParameterType::DEVICE},
    {"Stream", ParameterType::STREAM},
    {"std::string", ParameterType::STRING},
    {"c10::string_view", ParameterType::STRING},
    {"SymInt", ParameterType::SYM_INT},
    {"Dimname", ParameterType::DIMNAME},
    {"SymIntArrayRef", ParameterType::SYM_INT_LIST},
    {"DimnameList", ParameterType::DIMNAME_LIST},
    {"ScalarList", ParameterType::SCALAR_LIST},
};

// Default arg name translations for compatibility with NumPy.
//
// Example:
// ```python
// t = torch.randn(10,10)
// torch.sum(a=t, axis=0, keepdim=True)
// ```
//
// A vector is necessary, because we might need to try multiple values.
// In particular, NumPy sometimes uses "x" and sometimes "a" for the main input
// tensor. Rather than annotate each function separately with whether it should
// take "x" or "a", just try both.
//
// TODO: Allow individual functions to specify non-default translations:
// For example, `torch.pow` should translate "exponent" to "x2".
static const std::unordered_map<std::string, std::vector<std::string>>
    numpy_compatibility_arg_names = {
        {"dim", {"axis"}},
        {"keepdim", {"keepdims"}},
        {"input", {"x", "a", "x1"}},
        {"other", {"x2"}},
};

// TODO: remove this. This is a temporary list of functions that allow Python
// numbers to bind to Tensors. Some binary ops have separate Tensor and Scalar
// overloads and binding to the Tensor overload with a number of a different
// type will trigger a type error.
//
// If you modify this, you will need to adjust the blocklist in
// tools/pyi/gen_pyi.py (and add hardcoded signatures for these
// functions.)
bool should_allow_numbers_as_tensors(const std::string& name) {
  static std::unordered_set<std::string> allowed = {
      "add",          "add_",          "add_out",
      "div",          "div_",          "div_out",
      "divide",       "divide_",       "divide_out", // alias of div
      "mul",          "mul_",          "mul_out",
      "multiply",     "multiply_",     "multiply_out", // alias of mul
      "sub",          "sub_",          "sub_out",
      "subtract",     "subtract_",     "subtract_out", // alias of sub
      "true_divide",  "true_divide_",  "true_divide_out",
      "to",           "_to_copy",      "copy_",
      "floor_divide", "floor_divide_", "floor_divide_out"};
  return allowed.find(name) != allowed.end();
}

// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionParameter::FunctionParameter(const std::string& fmt, bool keyword_only)
    : optional(false),
      allow_none(false),
      keyword_only(keyword_only),
      size(0),
      default_scalar(0) {
  auto space = fmt.find(' ');
  if (space == std::string::npos) {
    throw std::runtime_error("FunctionParameter(): missing type: " + fmt);
  }

  auto type_str = fmt.substr(0, space);

  auto question = type_str.find('?');
  if (question != std::string::npos) {
    allow_none = true;
    type_str = type_str.substr(0, question);
  }

  // Parse and remove brackets from type_str
  auto bracket = type_str.find('[');
  if (bracket != std::string::npos) {
    auto size_str =
        type_str.substr(bracket + 1, type_str.length() - bracket - 2);
    size = atoi(size_str.c_str());
    type_str = type_str.substr(0, bracket);
  }

  auto name_str = fmt.substr(space + 1);
  auto it = type_map.find(type_str);
  if (it == type_map.end()) {
    throw std::runtime_error(
        "FunctionParameter(): invalid type string: " + type_str);
  }
  type_ = it->second;

  auto eq = name_str.find('=');
  if (eq != std::string::npos) {
    name = name_str.substr(0, eq);
    optional = true;
    set_default_str(name_str.substr(eq + 1));
  } else {
    name = name_str;
  }
  python_name = THPUtils_internString(name);
  auto np_compat_it = numpy_compatibility_arg_names.find(name);
  if (np_compat_it != numpy_compatibility_arg_names.end()) {
    for (const auto& str : np_compat_it->second) {
      numpy_python_names.push_back(THPUtils_internString(str));
    }
  }
}

auto handle_torch_function_getter(
    THPVariable* self,
    const std::string& property_name) -> PyObject* {
  py::object torch_api = PyObject_FastGetAttrString(
      THPVariableClass, (char*)property_name.c_str());
  std::string module_name = "torch.Tensor." + property_name;
  return handle_torch_function(
      (PyObject*)self,
      "__get__",
      nullptr,
      nullptr,
      torch_api.ptr(),
      module_name);
}

auto handle_torch_function_setter(
    THPVariable* self,
    const std::string& property_name,
    PyObject* value) -> int {
  py::object torch_api = PyObject_FastGetAttrString(
      THPVariableClass, (char*)property_name.c_str());
  std::string module_name = "torch.Tensor." + property_name;
  if (value != nullptr) {
    py::tuple args_ = py::make_tuple(py::handle(value));
    handle_torch_function(
        (PyObject*)self,
        "__set__",
        args_.ptr(),
        nullptr,
        torch_api.ptr(),
        module_name);
  } else {
    handle_torch_function(
        (PyObject*)self,
        "__delete__",
        nullptr,
        nullptr,
        torch_api.ptr(),
        module_name);
  }
  return 0;
}

// Combines self and args into one tuple.
auto combine_self_args(PyObject* self, PyObject* args) -> py::tuple {
  if (args == nullptr) {
    return py::make_tuple(py::handle(self));
  } else if (self == nullptr) {
    return py::reinterpret_borrow<py::tuple>(args);
  }

  auto py_args = py::reinterpret_borrow<py::tuple>(args);
  size_t n = py_args.size();
  auto args_ = py::tuple(n + 1);
  args_[0] = py::handle(self);
  for (const auto i : c10::irange(n)) {
    args_[i + 1] = py_args[i];
  }
  return args_;
}

// TODO: I'm not sure if I should call this __torch_function__ or
// torch_function.  The former makes it easier to take an existing
// Tensor-like __torch_function__ object and turn it into a mode;
// but in general modes don't have to be Tensor-like (and we will
// improperly accept mode objects as arguments when they shouldn't
// be passed around in this way).
const char* torch_function_mode_name = "__torch_function__";

auto handle_torch_function(
    PyObject* self,
    const std::string& func_name,
    PyObject* args,
    PyObject* kwargs,
    PyObject* torch_api,
    const std::string& module_name) -> PyObject* {
  py::object torch_api_function =
      PyObject_FastGetAttrString(torch_api, (char*)func_name.c_str());
  TORCH_INTERNAL_ASSERT(
      torch_api_function.ptr() != nullptr, "torch API function must exist");
  py::tuple args_ = combine_self_args(self, args);
  return handle_torch_function_no_python_arg_parser(
      {py::handle(self)},
      args_.ptr(),
      kwargs,
      func_name.c_str(),
      torch_api_function.ptr(),
      module_name.c_str(),
      TorchFunctionName::TorchFunction);
}

// Note: [Overloaded args]
// An overloaded arg may be one of the following:
// - an instance of an object that has a __torch_function__ method
// - an instance of an object that has a __torch_dispatch__ classmethod
// - a class type that has a __torch_dispatch__ classmethod
//
// This function returns the type of the arg (if the arg is an instance),
// otherwise, it returns the arg.
static PyObject* get_type_of_overloaded_arg(PyObject* obj_or_type) {
  if (PyType_Check(obj_or_type)) {
    return obj_or_type;
  }
  return (PyObject*)Py_TYPE(obj_or_type);
}

// See Note: [Overloaded args] for what they hold
auto handle_torch_function_no_python_arg_parser(
    at::ArrayRef<py::handle> overloaded_args,
    PyObject* args,
    PyObject* kwargs,
    const char* func_name,
    PyObject* torch_api_function,
    const char* module_name,
    TorchFunctionName torch_function_name) -> PyObject* {
  const char* torch_function_name_str = nullptr;
  switch (torch_function_name) {
    case TorchFunctionName::TorchFunction:
      torch_function_name_str = "__torch_function__";
      break;
    case TorchFunctionName::TorchDispatch:
      torch_function_name_str = "__torch_dispatch__";
      break;
    default:
      TORCH_INTERNAL_ASSERT(0, static_cast<int>(torch_function_name));
  }
  // overloaded_args already all have unique types
  // nb: modes don't go in the overloaded types list, as they are not
  // necessarily types
  std::vector<py::object> overloaded_types;
  overloaded_types.reserve(overloaded_args.size());
  for (auto& arg : overloaded_args) {
    overloaded_types.push_back(py::reinterpret_borrow<py::object>(
        get_type_of_overloaded_arg(arg.ptr())));
  }
  py::tuple py_types = py::cast(overloaded_types);
  py::object ret;
  PyObject* mode_obj = nullptr;
  const bool is_torch_function =
      torch_function_name == TorchFunctionName::TorchFunction;
  auto get_mode = [&]() {
    return is_torch_function ? at::impl::PythonTorchFunctionTLS::get_mode()
                             : c10::impl::TorchDispatchModeTLS::get_mode();
  };

  const auto& maybe_mode = get_mode();
  if (maybe_mode) {
    mode_obj = maybe_mode->ptr(getPyInterpreter());
    TORCH_INTERNAL_ASSERT(py_types.ptr() != nullptr);
    TORCH_INTERNAL_ASSERT(args != nullptr);
    // Disable mode on the inside; this makes for a more user-friendly
    // experience if you try to, e.g., print your tensors.
    at::optional<torch::overrides::StashTorchFunctionModeGuard> tf_g;
    at::optional<torch_dispatch_mode::StashTorchDispatchModeGuard> td_g;
    if (is_torch_function) {
      tf_g.emplace();
    } else {
      td_g.emplace();
    }
    // Blegh.  This accidentally works in PyObject_CallFunctionObjArgs below
    // because the nullptr terminates the argument list ick ick ick.
    if (kwargs == nullptr) {
      ret = py::reinterpret_steal<py::object>(PyObject_CallMethod(
          mode_obj,
          torch_function_name_str,
          "OOO",
          torch_api_function,
          py_types.ptr(),
          args));
    } else {
      ret = py::reinterpret_steal<py::object>(PyObject_CallMethod(
          mode_obj,
          torch_function_name_str,
          "OOOO",
          torch_api_function,
          py_types.ptr(),
          args,
          kwargs));
    }
    if (ret.ptr() == nullptr) {
      throw python_error();
    }
  }
  if (ret.ptr() == nullptr || ret.ptr() == Py_NotImplemented) {
    for (auto& arg : overloaded_args) {
      // NOLINTNEXTLINE(clang-diagnostic-writable-strings)
      py::object torch_function =
          PyObject_FastGetAttrString(arg.ptr(), torch_function_name_str);
      if (!torch_function) {
        TORCH_INTERNAL_ASSERT(0);
      }

      // See https://github.com/pytorch/pytorch/issues/63767
      if (PyObject_FastGetAttrString(torch_function.ptr(), "__self__")
              .is(arg) &&
          torch_function.ptr() != torch::disabled_torch_function_impl()) {
        TORCH_WARN(
            "Defining your `",
            torch_function_name_str,
            "` as a plain method is deprecated ",
            "and will be an error in future, please define it as a classmethod.");
      }

      ret = py::reinterpret_steal<py::object>(PyObject_CallFunctionObjArgs(
          torch_function.ptr(),
          torch_api_function,
          py_types.ptr(),
          args,
          kwargs,
          NULL));
      if (ret.ptr() != Py_NotImplemented) {
        // Return the reference to the result. This also covers the case where
        // ret is NULL and __torch_function__/__torch_dispatch raised an
        // exception, which we throw below
        break;
      }
    }
  }
  if (ret.ptr() == nullptr) {
    // if an exception occurred in a user's implementation of
    // __torch_function__, throw it
    throw python_error();
  } else if (ret.ptr() == Py_NotImplemented) {
    // all __torch_function__ implementations in overloaded_args
    // returned NotImplemented, so we raise a TypeError.
    std::stringstream ss;
    ss << "no implementation found for '";
    if (module_name && func_name) {
      ss << module_name << "." << func_name;
    } else {
      py::handle fn = torch_api_function;
      ss << py::str(fn.attr("__module__")) << "."
         << py::str(fn.attr("__name__"));
    }
    ss << "' on types that implement " << torch_function_name_str << ": [";
    for (auto& arg : overloaded_args) {
      ss << py::repr(get_type_of_overloaded_arg(arg.ptr()));
      if (!arg.is(overloaded_args.back())) {
        ss << ", ";
      }
    }
    ss << "]";
    if (mode_obj) {
      // Note [Paranoid check mode is same]
      // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      // If a user forcibly changes the mode in a non-lexical way
      // in the inner context, the mode could be invalid here.  So just be
      // a bit safe, it doesn't cost us anything since this is error reporting
      const auto& maybe_mode = get_mode();
      TORCH_INTERNAL_ASSERT(
          maybe_mode && mode_obj == maybe_mode->ptr(getPyInterpreter()));
      ss << " nor was it found on the currently active mode "
         << py::repr(mode_obj);
    }
    const std::string& tmp = ss.str();
    PyErr_SetString(PyExc_TypeError, tmp.c_str());
    throw python_error();
  }
  return ret.release().ptr();
}

auto handle_torch_function(
    PythonArgs& r,
    PyObject* self,
    PyObject* args,
    PyObject* kwargs,
    PyObject* torch_api,
    const char* module_name,
    const char* func_name_override) -> PyObject* {
  py::object torch_api_function = PyObject_FastGetAttrString(
      torch_api,
      (char*)(func_name_override ? func_name_override : r.get_func_name().c_str()));
  TORCH_INTERNAL_ASSERT(
      torch_api_function.ptr() != nullptr, "torch API function must exist");
  py::object ret;
  py::tuple args_ = combine_self_args(self, args);
  // overloaded_args already all have unique types
  std::vector<py::object> overloaded_types;
  overloaded_types.reserve(r.signature.overloaded_args.size());
  for (auto& arg : r.signature.overloaded_args) {
    overloaded_types.push_back(
        py::reinterpret_borrow<py::object>((PyObject*)Py_TYPE(arg.ptr())));
  }
  py::tuple py_types = py::cast(overloaded_types);
  return handle_torch_function_no_python_arg_parser(
      r.signature.overloaded_args,
      args_.ptr(),
      kwargs,
      r.get_func_name().c_str(),
      torch_api_function.ptr(),
      module_name);
}

auto handle_torch_function(
    PythonArgs& r,
    PyObject* args,
    PyObject* kwargs,
    PyObject* torch_api,
    const char* module_name,
    const char* func_name_override) -> PyObject* {
  return handle_torch_function(
      r, nullptr, args, kwargs, torch_api, module_name, func_name_override);
}

auto handle_torch_function_indexing(
    PyObject* self,
    PyObject* index,
    PyObject* val) -> PyObject* {
  const char* func_name = (val == nullptr) ? "__getitem__" : "__setitem__";
  py::object index_tup;
  if (PyTuple_Check(index)) {
    index_tup = py::reinterpret_borrow<py::object>(index);
  } else {
    index_tup = py::make_tuple(py::handle(index));
  }
  std::vector<py::handle> overridable_args;
  is_tensor_and_append_overloaded(self, &overridable_args);
  auto size = PyTuple_GET_SIZE(index_tup.ptr());
  for (auto i : c10::irange(size)) {
    auto* obj = PyTuple_GetItem(index_tup.ptr(), i);
    is_tensor_and_append_overloaded(obj, &overridable_args);
  }
  if (val != nullptr) {
    is_tensor_and_append_overloaded(val, &overridable_args);
  }
  py::object func =
      PyObject_FastGetAttrString(THPVariableClass, (char*)func_name);
  py::object args = (val == nullptr)
      ? py::make_tuple(py::handle(self), py::handle(index))
      : py::make_tuple(py::handle(self), py::handle(index), py::handle(val));
  return handle_torch_function_no_python_arg_parser(
      overridable_args,
      args.ptr(),
      nullptr,
      func_name,
      func.ptr(),
      "torch.Tensor");
}

/*
 *  obj has a __torch_function__ implementation and may either be a
 *  subclass of Tensor or a Tensor-like duck type. We may need to
 *  append this object to the overloaded_args vector, which tracks all
 *  of the arguments with distinct __torch_function__ implementations
 *  we've seen so far.
 *
 *  If this is the first argument we've seen with __torch_function__
 *  defined, we unconditionally add obj to the overloaded_args vector.
 *
 *  If we've already seen arguments with __torch_function__ defined,
 *  then we first need to check if obj is the same type as any of the
 *  entries in overloaded_args.  If so, we can ignore obj since we
 *  already have an entry in overloaded_args with the same
 *  __torch_function__ implementation.
 *
 *  If it's a different type, we then need to check if it's a subclass
 *  of one of the types we've already seen. If so, we need to insert an
 *  entry in overloaded_args for this type with higher precedence than
 *  the superclass.
 *
 *  See torch._overrides._get_overloaded_types_and_args for the equivalent
 *  function in the Python __torch_function__ implementation.
 *
 *  The precedence-determining algorithm implemented in this function is
 *  described in NEP-0018:
 *  https://numpy.org/neps/nep-0018-array-function-protocol.html
 *
 *  'overloaded_args' is a raw pointer to a vector of pybind11 handles
 *  that have distinct __torch_function__ implementations, in order of calling
 *  precedence.
 *
 *  'obj' is an object to check for a __torch_function__ implementation
 *
 * If changing this file in a way that can affect the __torch_function__
 * overhead, please report the benchmarks in 'benchmarks/overrides_benchmark'.
 * See the instructions in the 'README.md' in that directory.
 *
 */

static void append_overloaded_arg(
    std::vector<py::handle>* overloaded_args,
    PyObject* obj,
    bool obj_is_type) {
  bool class_not_seen_yet = true;
  PyObject* obj_type = obj_is_type ? obj : (PyObject*)Py_TYPE(obj);
  for (auto& arg : *overloaded_args) {
    if (obj_type == get_type_of_overloaded_arg(arg.ptr())) {
      // obj is the same type as another parameter we've seen in a prior
      // iteration of the loop over parameters so we already have an entry
      // with the proper __torch_function__ implementation to call, so skip
      // this parameter
      class_not_seen_yet = false;
      break;
    }
  }
  if (class_not_seen_yet) {
    int arg_index = overloaded_args->size();
    for (const auto j : c10::irange(arg_index)) {
      if (PyObject_IsSubclass(
              obj_type,
              (PyObject*)(get_type_of_overloaded_arg(
                  (*overloaded_args)[j].ptr())))) {
        // obj is a subclass of another object we've seen already so its
        // __torch_function__ should be called first, therefore we
        // insert it into overloaded_args before the superclass
        arg_index = j;
        break;
      }
    }
    // add object to overloaded_args. If it's a subclass of another class
    // we've already seen it will be inserted before the superclass,
    // otherwise it will be inserted at the end of the array
    overloaded_args->insert(overloaded_args->begin() + arg_index, obj);
  }
}

void append_overloaded_tensor(
    std::vector<py::handle>* overloaded_args,
    PyObject* obj) {
  append_overloaded_arg(overloaded_args, obj, /*obj_is_type*/ false);
}

void append_overloaded_type(
    std::vector<py::handle>* overloaded_args,
    PyObject* obj) {
  append_overloaded_arg(overloaded_args, obj, /*obj_is_type*/ true);
}

bool is_tensor_and_append_overloaded(
    PyObject* obj,
    std::vector<py::handle>* overloaded_args) {
  if (THPVariable_CheckExact(obj)) {
    // torch.Tensor instances (not subclasses, except for Parameter)
    return true;
  }

  if (check_has_torch_function(obj, /*ignore_mode*/ true)) {
    // tensor subclasses and unrelated objects with __torch_function__
    append_overloaded_tensor(overloaded_args, obj);
    return true;
  } else if (THPVariable_Check(obj)) {
    // tensor subclasses without __torch_function__
    return true;
  }

  return false;
}

bool is_scalar_list(PyObject* obj) {
  auto tuple = six::isTuple(obj);
  if (!(tuple || PyList_Check(obj))) {
    return false;
  }
  // NOLINTNEXTLINE(bugprone-branch-clone)
  const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
  for (const auto idx : c10::irange(size)) {
    PyObject* iobj =
        tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
    if (!THPUtils_checkScalar(iobj)) {
      return false;
    }
  }
  return true;
}

bool is_tensor_list_and_append_overloaded(
    PyObject* obj,
    std::vector<py::handle>* overloaded_args,
    int argnum,
    bool throw_error) {
  auto tuple = six::isTuple(obj);
  if (!(tuple || PyList_Check(obj))) {
    return false;
  }
  // NOLINTNEXTLINE(bugprone-branch-clone)
  const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
  for (long idx = 0; idx < size; idx++) {
    PyObject* iobj =
        tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
    if (!is_tensor_and_append_overloaded(iobj, overloaded_args)) {
      if (throw_error) {
        throw TypeError(
            "expected Tensor as element %d in argument %d, but got %s",
            static_cast<int>(idx),
            argnum,
            Py_TYPE(iobj)->tp_name);
      }
      return false;
    }
  }
  return true;
}

bool is_float_or_complex_list(PyObject* obj) {
  auto tuple = six::isTuple(obj);
  if (!(tuple || PyList_Check(obj))) {
    return false;
  }

  // NOLINTNEXTLINE(bugprone-branch-clone)
  const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
  if (size > 0) {
    PyObject* iobj = tuple ? PyTuple_GET_ITEM(obj, 0) : PyList_GET_ITEM(obj, 0);
    if (!THPUtils_checkDouble(iobj) && !PyComplex_Check(iobj)) {
      return false;
    }
  }

  return true;
}

static bool is_int_list(PyObject* obj, int broadcast_size) {
  if (PyTuple_Check(obj) || PyList_Check(obj)) {
    auto len = PySequence_Size(obj);
    if (len == 0) {
      return true;
    }

    auto item = py::reinterpret_steal<py::object>(PySequence_GetItem(obj, 0));
    bool int_first = false;
    if (THPUtils_checkIndex(item.ptr())) {
      // we still have to check that the rest of items are NOT symint nodes
      int_first = true;
    }

    // Make sure none of the later arguments are SymInt
    // NB: do NOT check that the later arguments are ints, as this is
    // BC-breaking for FX
    for (int i = 1; i < len; i++) {
      if (torch::is_symint_node(
              py::reinterpret_steal<py::object>(PySequence_GetItem(obj, i)))) {
        return false;
      }
    }

    if (int_first) {
      return true;
    }

    // NOTE: JIT tracer allows arbitrary scalar tensors to act as ints
    // in an intlist argument. Even float or complex scalar tensors.
    return (
        jit::tracer::isTracing() && THPVariable_Check(item.ptr()) &&
        THPVariable_Unpack(item.ptr()).sizes() == c10::IntArrayRef{});
  }
  // if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single
  // int
  return broadcast_size > 0 && THPUtils_checkLong(obj);
}

static bool is_int_or_symint(PyObject* obj) {
  // THPUtils_checkIndex may call __index__ or __int__
  // which may have side effects if obj is a symint node
  // so we do `is_symint_node` check first
  // TODO: maybe we should be using checkLong here?
  return torch::is_symint_node(py::handle(obj)) || THPUtils_checkIndex(obj);
}

static bool is_int_or_symint_list(PyObject* obj, int broadcast_size) {
  if (PyTuple_Check(obj) || PyList_Check(obj)) {
    if (PySequence_Size(obj) == 0) {
      return true;
    }
    auto item = py::reinterpret_steal<py::object>(PySequence_GetItem(obj, 0));

    if (is_int_or_symint(item.ptr())) {
      return true;
    }
    // NOTE: JIT tracer allows arbitrary scalar tensors to act as ints
    // in an intlist argument. Even float or complex scalar tensors.
    return (
        jit::tracer::isTracing() && THPVariable_Check(item.ptr()) &&
        THPVariable_Unpack(item.ptr()).sizes() == c10::IntArrayRef{});
  }
  // if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single
  // int
  return broadcast_size > 0 && THPUtils_checkLong(obj);
}

// argnum is needed for raising the TypeError, it's used in the error message.
auto FunctionParameter::check(
    PyObject* obj,
    std::vector<py::handle>& overloaded_args,
    int argnum) -> bool {
  switch (type_) {
    case ParameterType::TENSOR: {
      if (is_tensor_and_append_overloaded(obj, &overloaded_args)) {
        return true;
      }
      if (allow_numbers_as_tensors) {
        return THPUtils_checkScalar(obj);
      }
      return false;
    }
    case ParameterType::SCALAR:
      if (THPUtils_checkScalar(obj)) {
        return true;
      }
      // fallthrough
    case ParameterType::COMPLEX:
      if (PyComplex_Check(obj)) {
        return true;
      }
      // fallthrough
    case ParameterType::DOUBLE: {
      if (THPUtils_checkDouble(obj)) {
        return true;
      }
      if (THPVariable_Check(obj)) {
        const auto& var = THPVariable_Unpack(obj);
        return !var.requires_grad() && var.dim() == 0;
      }
      return false;
    }
    case ParameterType::INT64: {
      if (THPUtils_checkLong(obj)) {
        return true;
      }
      if (THPVariable_Check(obj)) {
        const auto& var = THPVariable_Unpack(obj);
        return at::isIntegralType(var.scalar_type(), /*includeBool=*/false) &&
            !var.requires_grad() && var.dim() == 0;
      }
      return false;
    }
    case ParameterType::DIMNAME:
      return THPUtils_checkDimname(obj);
    case ParameterType::DIMNAME_LIST: {
      if (THPUtils_checkDimnameList(obj)) {
        return true;
      }
      // if a size is specified (e.g. DimnameList[1]) we also allow passing a
      // single Dimname
      return size == 1 && THPUtils_checkDimname(obj);
    }
    case ParameterType::TENSOR_LIST: {
      return is_tensor_list_and_append_overloaded(
          obj, &overloaded_args, argnum, true /* throw_error */);
    }
    case ParameterType::INT_LIST:
      return is_int_list(obj, size);
    case ParameterType::FLOAT_LIST:
      return is_float_or_complex_list(obj);
    case ParameterType::GENERATOR:
      return THPGenerator_Check(obj);
    case ParameterType::BOOL:
      return PyBool_Check(obj);
    case ParameterType::STORAGE:
      return isStorage(obj);
    case ParameterType::PYOBJECT:
      return true;
    case ParameterType::SCALARTYPE:
      return THPDtype_Check(obj) || THPPythonScalarType_Check(obj);
    case ParameterType::LAYOUT:
      return THPLayout_Check(obj);
    case ParameterType::MEMORY_FORMAT:
      return THPMemoryFormat_Check(obj);
    case ParameterType::QSCHEME:
      return THPQScheme_Check(obj);
    case ParameterType::DEVICE:
      return THPUtils_checkLong(obj) || THPUtils_checkString(obj) ||
          THPDevice_Check(obj);
    case ParameterType::STREAM:
      return THPStream_Check(obj);
    case ParameterType::STRING:
      return THPUtils_checkString(obj);
    default:
      throw std::runtime_error("unknown parameter type");
    case ParameterType::SCALAR_LIST: {
      return is_scalar_list(obj);
    }
    case ParameterType::SYM_INT: {
      return is_int_or_symint(obj);
    }
    case ParameterType::SYM_INT_LIST: {
      return is_int_or_symint_list(obj, size);
    }
  }
}

std::string FunctionParameter::type_name() const {
  switch (type_) {
    case ParameterType::TENSOR:
      return "Tensor";
    case ParameterType::SCALAR:
      return "Number";
    case ParameterType::INT64:
      return "int";
    case ParameterType::SYM_INT:
      return "SymInt";
    case ParameterType::DOUBLE:
      return "float";
    case ParameterType::COMPLEX:
      return "complex";
    case ParameterType::TENSOR_LIST:
      return "tuple of Tensors";
    case ParameterType::INT_LIST:
      return "tuple of ints";
    case ParameterType::FLOAT_LIST:
      return "tuple of floats";
    case ParameterType::GENERATOR:
      return "torch.Generator";
    case ParameterType::BOOL:
      return "bool";
    case ParameterType::STORAGE:
      return "torch.Storage";
    case ParameterType::PYOBJECT:
      return "object";
    case ParameterType::SCALARTYPE:
      return "torch.dtype";
    case ParameterType::LAYOUT:
      return "torch.layout";
    case ParameterType::MEMORY_FORMAT:
      return "torch.memory_format";
    case ParameterType::QSCHEME:
      return "torch.qscheme";
    case ParameterType::DEVICE:
      return "torch.device";
    case ParameterType::STRING:
      return "str";
    case ParameterType::DIMNAME:
      return "name";
    case ParameterType::DIMNAME_LIST:
      return "tuple of names";
    case ParameterType::SCALAR_LIST:
      return "tuple of Scalars";
    case ParameterType::SYM_INT_LIST:
      return "tuple of SymInts";
    default:
      throw std::runtime_error("unknown parameter type");
  }
}

static inline c10::optional<int64_t> parse_as_integer(const std::string& s) {
  if (s.empty())
    return c10::nullopt;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  char* str_end;
  long ans = strtol(s.c_str(), &str_end, 0);
  // *str_end == 0 if the entire string was parsed as an integer.
  return (*str_end == 0) ? c10::optional<int64_t>(ans) : c10::nullopt;
}

/*
Parse default value of IntArrayRef declared at native_functions.yaml

There are two kinds of default values:
1. IntArrayRef[2] x=1 (where size=2, value={1,1}
2. IntArrayRef x={1,2,3} (where size=3, value={1,2,3}, note that there cannot be
space after comma since native_parse.py uses ', ' to split args)
*/
static inline std::vector<int64_t> parse_intlist_args(
    const std::string& s,
    int64_t size) {
  size_t n = s.size();

  if (s.empty())
    return std::vector<int64_t>();

  // case 1. s is an int (e.g., s=2)
  if (s[0] != '{') {
    return std::vector<int64_t>(size, std::stol(s));
  }

  // case 2. s is a list of dims (e.g., s={1,2})

  // since already checked left brace '{' above, here only checks right brace
  // '}'
  TORCH_CHECK(
      s[n - 1] == '}',
      "Default value of IntArrayRef is missing right brace '}', found ",
      s[n - 1]);

  auto args = std::vector<int64_t>();
  std::istringstream ss(s.substr(1, s.length() - 2)); // exclude '{' and '}'
  std::string tok;

  while (std::getline(ss, tok, ',')) {
    args.emplace_back(std::stol(tok));
  }
  return args;
}

// Parse a string literal to remove quotes and escape sequences
static std::string parse_string_literal(c10::string_view str) {
  TORCH_CHECK(str.length() >= 2, "String defaults must be quoted");

  if (str.front() == '"') {
    TORCH_CHECK(
        str.back() == '"', "Mismatched quotes in string default: ", str);
  } else {
    TORCH_CHECK(
        str.front() == '\'' && str.back() == '\'',
        "Invalid quotes in string default: ",
        str)
  }

  std::string parsed;
  parsed.reserve(str.size());
  for (size_t i = 1; i < str.size() - 1;) {
    if (str[i] != '\\') {
      parsed.push_back(str[i]);
      ++i;
      continue;
    }

    // Handle escape sequences
    TORCH_CHECK(
        i < str.size() - 2, "String ends with escaped final quote: ", str)
    char c = str[i + 1];
    switch (c) {
      case '\\':
      case '\'':
      case '\"':
        break;
      case 'a':
        c = '\a';
        break;
      case 'b':
        c = '\b';
        break;
      case 'f':
        c = '\f';
        break;
      case 'n':
        c = '\n';
        break;
      case 'v':
        c = '\v';
        break;
      case 't':
        c = '\t';
        break;
      default:
        TORCH_CHECK(
            false,
            "Unsupported escape sequence in string default: \\",
            str[i + 1]);
    }
    parsed.push_back(c);
    i += 2;
  }
  return parsed;
}

void FunctionParameter::set_default_str(const std::string& str) {
  if (str == "None") {
    allow_none = true;
  }
  if (type_ == ParameterType::TENSOR) {
    if (str != "None") {
      throw std::runtime_error(
          "default value for Tensor must be none, got: " + str);
    }
  } else if (type_ == ParameterType::INT64) {
    default_int = atol(str.c_str());
  } else if (type_ == ParameterType::BOOL) {
    default_bool = (str == "True" || str == "true");
  } else if (type_ == ParameterType::DOUBLE) {
    default_double = atof(str.c_str());
  } else if (type_ == ParameterType::COMPLEX) {
    default_complex[0] = atof(str.c_str()); // TODO: parse "x + xj"?
    default_complex[1] = 0;
  } else if (type_ == ParameterType::SCALAR) {
    if (str != "None") {
      // we sometimes rely on integer-vs-float values, e.g. with arange.
      const auto as_integer = parse_as_integer(str);
      default_scalar = as_integer.has_value() ? at::Scalar(as_integer.value())
                                              : at::Scalar(atof(str.c_str()));
    }
  } else if (type_ == ParameterType::INT_LIST) {
    if (str != "None") {
      default_intlist = parse_intlist_args(str, size);
    }
  } else if (type_ == ParameterType::FLOAT_LIST) {
    if (str != "None") {
      throw std::runtime_error("Defaults not supported for float[]");
    }
  } else if (type_ == ParameterType::SCALARTYPE) {
    if (str == "None") {
      default_scalartype = at::ScalarType::Undefined;
    } else if (str == "torch.int64") {
      default_scalartype = at::ScalarType::Long;
    } else {
      throw std::runtime_error("invalid default value for ScalarType: " + str);
    }
  } else if (type_ == ParameterType::LAYOUT) {
    if (str == "None") {
      TORCH_INTERNAL_ASSERT_DEBUG_ONLY(allow_none);
    } else if (str == "torch.strided") {
      default_layout = at::Layout::Strided;
    } else if (str == "torch.sparse_coo") {
      default_layout = at::Layout::Sparse;
    } else {
      throw std::runtime_error("invalid default value for layout: " + str);
    }
  } else if (type_ == ParameterType::DEVICE) {
    if (str != "None") {
      throw std::runtime_error("invalid device: " + str);
    }
  } else if (type_ == ParameterType::STREAM) {
    if (str != "None") {
      throw std::runtime_error("invalid stream: " + str);
    }
  } else if (type_ == ParameterType::STRING) {
    if (str != "None") {
      default_string = parse_string_literal(str);
    }
  }
}

// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionSignature::FunctionSignature(const std::string& fmt, int index)
    : min_args(0),
      max_args(0),
      max_pos_args(0),
      index(index),
      hidden(false),
      deprecated(false) {
  auto open_paren = fmt.find('(');
  if (open_paren == std::string::npos) {
    throw std::runtime_error("missing opening parenthesis: " + fmt);
  }
  name = fmt.substr(0, open_paren);

  bool allow_numbers_as_tensors = should_allow_numbers_as_tensors(name);

  auto last_offset = open_paren + 1;
  // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
  auto next_offset = last_offset;
  bool keyword_only = false;
  bool done = false;
  while (!done) {
    auto offset = fmt.find(", ", last_offset);
    if (offset == std::string::npos) {
      offset = fmt.find(')', last_offset);
      done = true;
      next_offset = offset + 1;
      // this 'if' happens for an empty parameter list, i.e. fn().
      if (offset == last_offset) {
        last_offset = next_offset;
        break;
      }
    } else {
      next_offset = offset + 2;
    }
    if (offset == std::string::npos) {
      throw std::runtime_error("missing closing parenthesis: " + fmt);
    }
    if (offset == last_offset) {
      throw std::runtime_error("malformed signature: " + fmt);
    }

    auto param_str = fmt.substr(last_offset, offset - last_offset);
    last_offset = next_offset;
    if (param_str == "*") {
      keyword_only = true;
    } else {
      params.emplace_back(param_str, keyword_only);
      params.back().allow_numbers_as_tensors = allow_numbers_as_tensors;
    }
  }

  if (fmt.substr(last_offset) == "|deprecated") {
    hidden = true;
    // TODO: raise warning when parsing deprecated signatures
    deprecated = true;
  } else if (fmt.substr(last_offset) == "|hidden") {
    hidden = true;
  }

  max_args = params.size();

  // count the number of non-optional args
  for (auto& param : params) {
    if (!param.optional) {
      min_args++;
    }
    if (!param.keyword_only) {
      max_pos_args++;
    }
  }
}

std::string FunctionSignature::toString() const {
  // TODO: consider printing more proper schema strings with defaults,
  // optionals, etc.
  std::ostringstream ss;
  bool keyword_already = false;
  ss << "(";
  int i = 0;
  for (auto& param : params) {
    if (i != 0) {
      ss << ", ";
    }
    if (param.keyword_only && !keyword_already) {
      ss << "*, ";
      keyword_already = true;
    }
    ss << param.type_name() << " " << param.name;
    i++;
  }
  ss << ")";
  return ss.str();
}

[[noreturn]] static void extra_args(
    const FunctionSignature& signature,
    Py_ssize_t nargs) {
  const long max_pos_args = signature.max_pos_args;
  const long min_args = signature.min_args;
  const long nargs_ = nargs;
  if (min_args != max_pos_args) {
    throw TypeError(
        "%s() takes from %ld to %ld positional arguments but %ld were given",
        signature.name.c_str(),
        min_args,
        max_pos_args,
        nargs_);
  }
  throw TypeError(
      "%s() takes %ld positional argument%s but %ld %s given",
      signature.name.c_str(),
      max_pos_args,
      max_pos_args == 1 ? "" : "s",
      nargs_,
      nargs == 1 ? "was" : "were");
}

[[noreturn]] static void missing_args(
    const FunctionSignature& signature,
    int idx) {
  int num_missing = 0;
  std::stringstream ss;

  auto& params = signature.params;
  for (auto it = params.begin() + idx; it != params.end(); ++it) {
    if (!it->optional) {
      if (num_missing > 0) {
        ss << ", ";
      }
      ss << '"' << it->name << '"';
      num_missing++;
    }
  }

  throw TypeError(
      "%s() missing %d required positional argument%s: %s",
      signature.name.c_str(),
      num_missing,
      num_missing == 1 ? "s" : "",
      ss.str().c_str());
}

static Py_ssize_t find_param(FunctionSignature& signature, PyObject* name) {
  Py_ssize_t i = 0;
  for (auto& param : signature.params) {
    int cmp = PyObject_RichCompareBool(name, param.python_name, Py_EQ);
    if (cmp < 0) {
      throw python_error();
    } else if (cmp) {
      return i;
    }
    i++;
  }
  return -1;
}

[[noreturn]] static void extra_kwargs(
    FunctionSignature& signature,
    PyObject* kwargs,
    Py_ssize_t num_pos_args) {
  PyObject* key = nullptr;
  PyObject* value = nullptr;
  Py_ssize_t pos = 0;

  while (PyDict_Next(kwargs, &pos, &key, &value)) {
    if (!THPUtils_checkString(key)) {
      throw TypeError("keywords must be strings");
    }

    auto param_idx = find_param(signature, key);
    if (param_idx < 0) {
      throw TypeError(
          "%s() got an unexpected keyword argument '%s'",
          signature.name.c_str(),
          THPUtils_unpackString(key).c_str());
    }

    if (param_idx < num_pos_args) {
      throw TypeError(
          "%s() got multiple values for argument '%s'",
          signature.name.c_str(),
          THPUtils_unpackString(key).c_str());
    }
  }

  // this should never be hit
  throw TypeError("invalid keyword arguments");
}

bool FunctionSignature::parse(
    PyObject* self,
    PyObject* args,
    PyObject* kwargs,
    PyObject* dst[], // NOLINT
    bool raise_exception) {
  size_t nargs = args ? PyTuple_GET_SIZE(args) : 0;
  auto remaining_kwargs = kwargs ? PyDict_Size(kwargs) : 0;
  size_t arg_pos = 0;
  bool allow_varargs_intlist = false;

  // if there is a single positional IntArrayRef argument, i.e. expand(..),
  // view(...), allow a var-args style IntArrayRef, so expand(5,3) behaves as
  // expand((5,3))
  int int_list_overload = false;
  if (max_pos_args == 1 &&
      (params[0].type_ == ParameterType::INT_LIST ||
       params[0].type_ == ParameterType::SYM_INT_LIST)) {
    allow_varargs_intlist = true;
    if (params[0].type_ == ParameterType::INT_LIST) {
      int_list_overload = true;
    }
  }

  if (nargs > max_pos_args && !allow_varargs_intlist) {
    if (raise_exception) {
      // foo() takes takes 2 positional arguments but 3 were given
      extra_args(*this, nargs);
    }
    return false;
  }

  if (!overloaded_args.empty()) {
    overloaded_args.clear();
  }

  int i = 0;
  if (self != nullptr && check_has_torch_function(self, /*ignore_mode*/ true)) {
    append_overloaded_tensor(&this->overloaded_args, self);
  }
  for (auto& param : params) {
    PyObject* obj = nullptr;
    bool is_kwd = false;
    if (arg_pos < nargs) {
      // extra positional args given after single positional IntArrayRef arg
      if (param.keyword_only) {
        if (raise_exception) {
          extra_args(*this, nargs);
        }
        return false;
      }
      obj = PyTuple_GET_ITEM(args, arg_pos);
    } else if (kwargs) {
      obj = PyDict_GetItem(kwargs, param.python_name);
      for (PyObject* numpy_name : param.numpy_python_names) {
        if (obj) {
          break;
        }
        obj = PyDict_GetItem(kwargs, numpy_name);
      }
      is_kwd = true;
    }

    if ((!obj && param.optional) || (obj == Py_None && param.allow_none)) {
      dst[i++] = nullptr;
    } else if (!obj) {
      if (raise_exception) {
        // foo() missing 1 required positional argument: "b"
        missing_args(*this, i);
      }
      return false;
    } else if (param.check(obj, this->overloaded_args, i)) {
      dst[i++] = obj;
      // XXX: the Variable check is necessary because sizes become tensors when
      // tracer is enabled. This behavior easily leads to ambiguities, and we
      // should avoid having complex signatures that make use of it...
    } else if (
        allow_varargs_intlist && arg_pos == 0 && !is_kwd &&
        ((int_list_overload ? is_int_list(args, param.size)
                            : is_int_or_symint_list(args, param.size)))) {
      // take all positional arguments as this parameter
      // e.g. permute(1, 2, 3) -> permute((1, 2, 3))
      dst[i++] = args;
      arg_pos = nargs;
      continue;
    } else if (raise_exception) {
      if (is_kwd) {
        // foo(): argument 'other' must be str, not int
        throw TypeError(
            "%s(): argument '%s' must be %s, not %s",
            name.c_str(),
            param.name.c_str(),
            param.type_name().c_str(),
            Py_TYPE(obj)->tp_name);
      } else {
        // foo(): argument 'other' (position 2) must be str, not int
        throw TypeError(
            "%s(): argument '%s' (position %ld) must be %s, not %s",
            name.c_str(),
            param.name.c_str(),
            static_cast<long>(arg_pos + 1),
            param.type_name().c_str(),
            Py_TYPE(obj)->tp_name);
      }
    } else {
      return false;
    }

    if (!is_kwd) {
      arg_pos++;
    } else if (obj) {
      remaining_kwargs--;
    }
  }

  if (remaining_kwargs > 0) {
    if (raise_exception) {
      // foo() got an unexpected keyword argument "b"
      extra_kwargs(*this, kwargs, nargs);
    }
    return false;
  }
  return true;
}

PythonArgParser::PythonArgParser(std::vector<std::string> fmts, bool traceable)
    : max_args(0), traceable(traceable) {
  int index = 0;
  for (auto& fmt : fmts) {
    signatures_.emplace_back(fmt, index);
    ++index;
  }
  for (auto& signature : signatures_) {
    if (signature.max_args > max_args) {
      max_args = signature.max_args;
    }
  }
  if (signatures_.size() > 0) {
    function_name = signatures_[0].name;
  }

  // Check deprecated signatures last
  std::stable_partition(
      signatures_.begin(), signatures_.end(), [](const FunctionSignature& sig) {
        return !sig.deprecated;
      });
}

void PythonArgParser::check_deprecated(const FunctionSignature& signature) {
  if (signature.deprecated) {
    auto msg = c10::str(
        "This overload of ",
        signature.name,
        " is deprecated:\n\t",
        signature.name,
        signature.toString());
    auto signatures = get_signatures();
    if (!signatures.empty()) {
      msg += "\nConsider using one of the following signatures instead:";
      for (const auto& sig : signatures) {
        msg += "\n\t";
        msg += signature.name;
        msg += sig;
      }
    }
    TORCH_WARN_ONCE(msg);
  }
}

PythonArgs PythonArgParser::raw_parse(
    PyObject* self,
    PyObject* args,
    PyObject* kwargs,
    PyObject* parsed_args[]) { // NOLINT
  if (signatures_.size() == 1) {
    auto& signature = signatures_[0];
    signature.parse(self, args, kwargs, parsed_args, true);
    check_deprecated(signature);
    return PythonArgs(traceable, signature, parsed_args);
  }

  for (auto& signature : signatures_) {
    if (signature.parse(self, args, kwargs, parsed_args, false)) {
      check_deprecated(signature);
      return PythonArgs(traceable, signature, parsed_args);
    }
  }

  print_error(self, args, kwargs, parsed_args);
}

void PythonArgParser::print_error(
    PyObject* self,
    PyObject* args,
    PyObject* kwargs,
    PyObject* parsed_args[]) { // NOLINT
  // NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
  size_t num_args = PyTuple_GET_SIZE(args) + (kwargs ? PyDict_Size(kwargs) : 0);
  std::vector<unsigned> plausible_idxs;
  unsigned i = 0;
  for (auto& signature : signatures_) {
    if (num_args >= signature.min_args && num_args <= signature.max_args &&
        !signature.hidden) {
      plausible_idxs.push_back(i);
    }
    i++;
  }

  if (plausible_idxs.size() == 1) {
    auto& signature = signatures_[plausible_idxs[0]];
    signature.parse(self, args, kwargs, parsed_args, true);
  }

  auto options = get_signatures();
  auto msg =
      torch::format_invalid_args(args, kwargs, function_name + "()", options);
  throw TypeError("%s", msg.c_str());
}

std::vector<std::string> PythonArgParser::get_signatures() const {
  std::vector<std::string> options;
  for (auto& signature : signatures_) {
    if (!signature.hidden) {
      options.push_back(signature.toString());
    }
  }
  return options;
}

at::Tensor PythonArgs::tensor_slow(int i) {
  PyObject* obj = args[i];
  if (!obj) {
    return at::Tensor();
  }
  if (THPVariable_Check(obj)) {
    return THPVariable_Unpack(obj);
  }

  bool save_symint = false;
  at::Scalar scalar;
  if (PyBool_Check(obj)) {
    scalar = at::Scalar(THPUtils_unpackBool(obj));
  } else if (THPUtils_checkLong(obj)) {
    scalar = at::Scalar(THPUtils_unpackLong(obj));
  } else if (PyComplex_Check(obj)) {
    scalar = at::Scalar(THPUtils_unpackComplexDouble(obj));
  } else if (THPUtils_checkDouble(obj)) {
    scalar = at::Scalar(THPUtils_unpackDouble(obj));
    // NB: we DO NOT put symbolic ints/floats into the Scalar itself,
    // because although Scalar supports SymInt/SymFloat, the subsequent
    // conversion to Tensor does not.  Instead, do it out of band.
  } else if (torch::is_symint_node(py::handle(obj))) {
    save_symint = true;
    // This scalar value doesn't matter, it shouldn't ever actually
    // get read out.  Make it a big and weird looking number to help
    // people figure out if there's aproblem.
    scalar = at::Scalar(7777777);
  } else if (torch::is_symfloat_node(py::handle(obj))) {
    save_symint = true;
    scalar = at::Scalar(std::numeric_limits<double>::quiet_NaN());
  } else {
    // NB: Are you here because you passed None to a Variable method,
    // and you expected an undefined tensor to be returned?   Don't add
    // a test for Py_None here; instead, you need to mark the argument
    // as *allowing none*; you can do this by writing 'Tensor?' instead
    // of 'Tensor' in the ATen metadata.
    throw TypeError(
        "expected Tensor as argument %d, but got %s", i, Py_TYPE(obj)->tp_name);
  }
  at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
  at::tracer::impl::NoTracerDispatchMode tracer_guard;

  at::Tensor tensor = scalar_to_tensor(scalar);
  tensor.unsafeGetTensorImpl()->set_wrapped_number(true);

  if (save_symint) {
    auto py_tensor = py::cast(tensor);
    if (PyObject_SetAttrString(py_tensor.ptr(), "_wrapped_number", obj) < 0) {
      throw python_error();
    }
  }

  return tensor;
}

at::Scalar PythonArgs::scalar_slow(int i) {
  if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
    auto& var = THPVariable_Unpack(args[i]);
    jit::tracer::ArgumentStash::stashValue(
        signature.params[i].name, idx, var, c10::NumberType::get());
  }

  return scalar_slow(args[i]);
}

at::Scalar PythonArgs::scalar_slow(PyObject* arg) {
  // Zero-dim tensors are converted to Scalars as-is. Note this doesn't
  // currently handle most NumPy scalar types except np.float64.
  if (THPVariable_Check(arg)) {
    return THPVariable_Unpack(arg).item();
  }

  if (THPUtils_checkLong(arg)) {
    return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg)));
  }

  if (PyBool_Check(arg)) {
    return at::Scalar(THPUtils_unpackBool(arg));
  }

  if (PyComplex_Check(arg)) {
    return at::Scalar(THPUtils_unpackComplexDouble(arg));
  }

  if (torch::is_symint_node(arg)) {
    return at::Scalar(py::cast<c10::SymInt>(arg));
  }

  if (torch::is_symfloat_node(arg)) {
    return at::Scalar(py::cast<c10::SymFloat>(arg));
  }

  return at::Scalar(THPUtils_unpackDouble(arg));
}

} // namespace torch