1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
|
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/invalid_arguments.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_torch_function_mode.h>
#include <torch/csrc/utils/torch_dispatch_mode.h>
#include <ATen/ATen.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/TracerMode.h>
#include <c10/util/irange.h>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
static std::unordered_map<std::string, ParameterType> type_map = {
{"Tensor", ParameterType::TENSOR},
{"Scalar", ParameterType::SCALAR},
{"int64_t", ParameterType::INT64},
{"double", ParameterType::DOUBLE},
{"complex", ParameterType::COMPLEX},
{"TensorList", ParameterType::TENSOR_LIST},
{"c10::List<c10::optional<Tensor>>", ParameterType::TENSOR_LIST},
{"IntArrayRef", ParameterType::INT_LIST},
{"ArrayRef<double>", ParameterType::FLOAT_LIST},
{"Generator", ParameterType::GENERATOR},
{"bool", ParameterType::BOOL},
{"Storage", ParameterType::STORAGE},
{"PyObject*", ParameterType::PYOBJECT},
{"ScalarType", ParameterType::SCALARTYPE},
{"Layout", ParameterType::LAYOUT},
{"MemoryFormat", ParameterType::MEMORY_FORMAT},
{"QScheme", ParameterType::QSCHEME},
{"Device", ParameterType::DEVICE},
{"Stream", ParameterType::STREAM},
{"std::string", ParameterType::STRING},
{"c10::string_view", ParameterType::STRING},
{"SymInt", ParameterType::SYM_INT},
{"Dimname", ParameterType::DIMNAME},
{"SymIntArrayRef", ParameterType::SYM_INT_LIST},
{"DimnameList", ParameterType::DIMNAME_LIST},
{"ScalarList", ParameterType::SCALAR_LIST},
};
// Default arg name translations for compatibility with NumPy.
//
// Example:
// ```python
// t = torch.randn(10,10)
// torch.sum(a=t, axis=0, keepdim=True)
// ```
//
// A vector is necessary, because we might need to try multiple values.
// In particular, NumPy sometimes uses "x" and sometimes "a" for the main input
// tensor. Rather than annotate each function separately with whether it should
// take "x" or "a", just try both.
//
// TODO: Allow individual functions to specify non-default translations:
// For example, `torch.pow` should translate "exponent" to "x2".
static const std::unordered_map<std::string, std::vector<std::string>>
numpy_compatibility_arg_names = {
{"dim", {"axis"}},
{"keepdim", {"keepdims"}},
{"input", {"x", "a", "x1"}},
{"other", {"x2"}},
};
// TODO: remove this. This is a temporary list of functions that allow Python
// numbers to bind to Tensors. Some binary ops have separate Tensor and Scalar
// overloads and binding to the Tensor overload with a number of a different
// type will trigger a type error.
//
// If you modify this, you will need to adjust the blocklist in
// tools/pyi/gen_pyi.py (and add hardcoded signatures for these
// functions.)
bool should_allow_numbers_as_tensors(const std::string& name) {
static std::unordered_set<std::string> allowed = {
"add", "add_", "add_out",
"div", "div_", "div_out",
"divide", "divide_", "divide_out", // alias of div
"mul", "mul_", "mul_out",
"multiply", "multiply_", "multiply_out", // alias of mul
"sub", "sub_", "sub_out",
"subtract", "subtract_", "subtract_out", // alias of sub
"true_divide", "true_divide_", "true_divide_out",
"to", "_to_copy", "copy_",
"floor_divide", "floor_divide_", "floor_divide_out"};
return allowed.find(name) != allowed.end();
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionParameter::FunctionParameter(const std::string& fmt, bool keyword_only)
: optional(false),
allow_none(false),
keyword_only(keyword_only),
size(0),
default_scalar(0) {
auto space = fmt.find(' ');
if (space == std::string::npos) {
throw std::runtime_error("FunctionParameter(): missing type: " + fmt);
}
auto type_str = fmt.substr(0, space);
auto question = type_str.find('?');
if (question != std::string::npos) {
allow_none = true;
type_str = type_str.substr(0, question);
}
// Parse and remove brackets from type_str
auto bracket = type_str.find('[');
if (bracket != std::string::npos) {
auto size_str =
type_str.substr(bracket + 1, type_str.length() - bracket - 2);
size = atoi(size_str.c_str());
type_str = type_str.substr(0, bracket);
}
auto name_str = fmt.substr(space + 1);
auto it = type_map.find(type_str);
if (it == type_map.end()) {
throw std::runtime_error(
"FunctionParameter(): invalid type string: " + type_str);
}
type_ = it->second;
auto eq = name_str.find('=');
if (eq != std::string::npos) {
name = name_str.substr(0, eq);
optional = true;
set_default_str(name_str.substr(eq + 1));
} else {
name = name_str;
}
python_name = THPUtils_internString(name);
auto np_compat_it = numpy_compatibility_arg_names.find(name);
if (np_compat_it != numpy_compatibility_arg_names.end()) {
for (const auto& str : np_compat_it->second) {
numpy_python_names.push_back(THPUtils_internString(str));
}
}
}
auto handle_torch_function_getter(
THPVariable* self,
const std::string& property_name) -> PyObject* {
py::object torch_api = PyObject_FastGetAttrString(
THPVariableClass, (char*)property_name.c_str());
std::string module_name = "torch.Tensor." + property_name;
return handle_torch_function(
(PyObject*)self,
"__get__",
nullptr,
nullptr,
torch_api.ptr(),
module_name);
}
auto handle_torch_function_setter(
THPVariable* self,
const std::string& property_name,
PyObject* value) -> int {
py::object torch_api = PyObject_FastGetAttrString(
THPVariableClass, (char*)property_name.c_str());
std::string module_name = "torch.Tensor." + property_name;
if (value != nullptr) {
py::tuple args_ = py::make_tuple(py::handle(value));
handle_torch_function(
(PyObject*)self,
"__set__",
args_.ptr(),
nullptr,
torch_api.ptr(),
module_name);
} else {
handle_torch_function(
(PyObject*)self,
"__delete__",
nullptr,
nullptr,
torch_api.ptr(),
module_name);
}
return 0;
}
// Combines self and args into one tuple.
auto combine_self_args(PyObject* self, PyObject* args) -> py::tuple {
if (args == nullptr) {
return py::make_tuple(py::handle(self));
} else if (self == nullptr) {
return py::reinterpret_borrow<py::tuple>(args);
}
auto py_args = py::reinterpret_borrow<py::tuple>(args);
size_t n = py_args.size();
auto args_ = py::tuple(n + 1);
args_[0] = py::handle(self);
for (const auto i : c10::irange(n)) {
args_[i + 1] = py_args[i];
}
return args_;
}
// TODO: I'm not sure if I should call this __torch_function__ or
// torch_function. The former makes it easier to take an existing
// Tensor-like __torch_function__ object and turn it into a mode;
// but in general modes don't have to be Tensor-like (and we will
// improperly accept mode objects as arguments when they shouldn't
// be passed around in this way).
const char* torch_function_mode_name = "__torch_function__";
auto handle_torch_function(
PyObject* self,
const std::string& func_name,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const std::string& module_name) -> PyObject* {
py::object torch_api_function =
PyObject_FastGetAttrString(torch_api, (char*)func_name.c_str());
TORCH_INTERNAL_ASSERT(
torch_api_function.ptr() != nullptr, "torch API function must exist");
py::tuple args_ = combine_self_args(self, args);
return handle_torch_function_no_python_arg_parser(
{py::handle(self)},
args_.ptr(),
kwargs,
func_name.c_str(),
torch_api_function.ptr(),
module_name.c_str(),
TorchFunctionName::TorchFunction);
}
// Note: [Overloaded args]
// An overloaded arg may be one of the following:
// - an instance of an object that has a __torch_function__ method
// - an instance of an object that has a __torch_dispatch__ classmethod
// - a class type that has a __torch_dispatch__ classmethod
//
// This function returns the type of the arg (if the arg is an instance),
// otherwise, it returns the arg.
static PyObject* get_type_of_overloaded_arg(PyObject* obj_or_type) {
if (PyType_Check(obj_or_type)) {
return obj_or_type;
}
return (PyObject*)Py_TYPE(obj_or_type);
}
// See Note: [Overloaded args] for what they hold
auto handle_torch_function_no_python_arg_parser(
at::ArrayRef<py::handle> overloaded_args,
PyObject* args,
PyObject* kwargs,
const char* func_name,
PyObject* torch_api_function,
const char* module_name,
TorchFunctionName torch_function_name) -> PyObject* {
const char* torch_function_name_str = nullptr;
switch (torch_function_name) {
case TorchFunctionName::TorchFunction:
torch_function_name_str = "__torch_function__";
break;
case TorchFunctionName::TorchDispatch:
torch_function_name_str = "__torch_dispatch__";
break;
default:
TORCH_INTERNAL_ASSERT(0, static_cast<int>(torch_function_name));
}
// overloaded_args already all have unique types
// nb: modes don't go in the overloaded types list, as they are not
// necessarily types
std::vector<py::object> overloaded_types;
overloaded_types.reserve(overloaded_args.size());
for (auto& arg : overloaded_args) {
overloaded_types.push_back(py::reinterpret_borrow<py::object>(
get_type_of_overloaded_arg(arg.ptr())));
}
py::tuple py_types = py::cast(overloaded_types);
py::object ret;
PyObject* mode_obj = nullptr;
const bool is_torch_function =
torch_function_name == TorchFunctionName::TorchFunction;
auto get_mode = [&]() {
return is_torch_function ? at::impl::PythonTorchFunctionTLS::get_mode()
: c10::impl::TorchDispatchModeTLS::get_mode();
};
const auto& maybe_mode = get_mode();
if (maybe_mode) {
mode_obj = maybe_mode->ptr(getPyInterpreter());
TORCH_INTERNAL_ASSERT(py_types.ptr() != nullptr);
TORCH_INTERNAL_ASSERT(args != nullptr);
// Disable mode on the inside; this makes for a more user-friendly
// experience if you try to, e.g., print your tensors.
at::optional<torch::overrides::StashTorchFunctionModeGuard> tf_g;
at::optional<torch_dispatch_mode::StashTorchDispatchModeGuard> td_g;
if (is_torch_function) {
tf_g.emplace();
} else {
td_g.emplace();
}
// Blegh. This accidentally works in PyObject_CallFunctionObjArgs below
// because the nullptr terminates the argument list ick ick ick.
if (kwargs == nullptr) {
ret = py::reinterpret_steal<py::object>(PyObject_CallMethod(
mode_obj,
torch_function_name_str,
"OOO",
torch_api_function,
py_types.ptr(),
args));
} else {
ret = py::reinterpret_steal<py::object>(PyObject_CallMethod(
mode_obj,
torch_function_name_str,
"OOOO",
torch_api_function,
py_types.ptr(),
args,
kwargs));
}
if (ret.ptr() == nullptr) {
throw python_error();
}
}
if (ret.ptr() == nullptr || ret.ptr() == Py_NotImplemented) {
for (auto& arg : overloaded_args) {
// NOLINTNEXTLINE(clang-diagnostic-writable-strings)
py::object torch_function =
PyObject_FastGetAttrString(arg.ptr(), torch_function_name_str);
if (!torch_function) {
TORCH_INTERNAL_ASSERT(0);
}
// See https://github.com/pytorch/pytorch/issues/63767
if (PyObject_FastGetAttrString(torch_function.ptr(), "__self__")
.is(arg) &&
torch_function.ptr() != torch::disabled_torch_function_impl()) {
TORCH_WARN(
"Defining your `",
torch_function_name_str,
"` as a plain method is deprecated ",
"and will be an error in future, please define it as a classmethod.");
}
ret = py::reinterpret_steal<py::object>(PyObject_CallFunctionObjArgs(
torch_function.ptr(),
torch_api_function,
py_types.ptr(),
args,
kwargs,
NULL));
if (ret.ptr() != Py_NotImplemented) {
// Return the reference to the result. This also covers the case where
// ret is NULL and __torch_function__/__torch_dispatch raised an
// exception, which we throw below
break;
}
}
}
if (ret.ptr() == nullptr) {
// if an exception occurred in a user's implementation of
// __torch_function__, throw it
throw python_error();
} else if (ret.ptr() == Py_NotImplemented) {
// all __torch_function__ implementations in overloaded_args
// returned NotImplemented, so we raise a TypeError.
std::stringstream ss;
ss << "no implementation found for '";
if (module_name && func_name) {
ss << module_name << "." << func_name;
} else {
py::handle fn = torch_api_function;
ss << py::str(fn.attr("__module__")) << "."
<< py::str(fn.attr("__name__"));
}
ss << "' on types that implement " << torch_function_name_str << ": [";
for (auto& arg : overloaded_args) {
ss << py::repr(get_type_of_overloaded_arg(arg.ptr()));
if (!arg.is(overloaded_args.back())) {
ss << ", ";
}
}
ss << "]";
if (mode_obj) {
// Note [Paranoid check mode is same]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// If a user forcibly changes the mode in a non-lexical way
// in the inner context, the mode could be invalid here. So just be
// a bit safe, it doesn't cost us anything since this is error reporting
const auto& maybe_mode = get_mode();
TORCH_INTERNAL_ASSERT(
maybe_mode && mode_obj == maybe_mode->ptr(getPyInterpreter()));
ss << " nor was it found on the currently active mode "
<< py::repr(mode_obj);
}
const std::string& tmp = ss.str();
PyErr_SetString(PyExc_TypeError, tmp.c_str());
throw python_error();
}
return ret.release().ptr();
}
auto handle_torch_function(
PythonArgs& r,
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override) -> PyObject* {
py::object torch_api_function = PyObject_FastGetAttrString(
torch_api,
(char*)(func_name_override ? func_name_override : r.get_func_name().c_str()));
TORCH_INTERNAL_ASSERT(
torch_api_function.ptr() != nullptr, "torch API function must exist");
py::object ret;
py::tuple args_ = combine_self_args(self, args);
// overloaded_args already all have unique types
std::vector<py::object> overloaded_types;
overloaded_types.reserve(r.signature.overloaded_args.size());
for (auto& arg : r.signature.overloaded_args) {
overloaded_types.push_back(
py::reinterpret_borrow<py::object>((PyObject*)Py_TYPE(arg.ptr())));
}
py::tuple py_types = py::cast(overloaded_types);
return handle_torch_function_no_python_arg_parser(
r.signature.overloaded_args,
args_.ptr(),
kwargs,
r.get_func_name().c_str(),
torch_api_function.ptr(),
module_name);
}
auto handle_torch_function(
PythonArgs& r,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override) -> PyObject* {
return handle_torch_function(
r, nullptr, args, kwargs, torch_api, module_name, func_name_override);
}
auto handle_torch_function_indexing(
PyObject* self,
PyObject* index,
PyObject* val) -> PyObject* {
const char* func_name = (val == nullptr) ? "__getitem__" : "__setitem__";
py::object index_tup;
if (PyTuple_Check(index)) {
index_tup = py::reinterpret_borrow<py::object>(index);
} else {
index_tup = py::make_tuple(py::handle(index));
}
std::vector<py::handle> overridable_args;
is_tensor_and_append_overloaded(self, &overridable_args);
auto size = PyTuple_GET_SIZE(index_tup.ptr());
for (auto i : c10::irange(size)) {
auto* obj = PyTuple_GetItem(index_tup.ptr(), i);
is_tensor_and_append_overloaded(obj, &overridable_args);
}
if (val != nullptr) {
is_tensor_and_append_overloaded(val, &overridable_args);
}
py::object func =
PyObject_FastGetAttrString(THPVariableClass, (char*)func_name);
py::object args = (val == nullptr)
? py::make_tuple(py::handle(self), py::handle(index))
: py::make_tuple(py::handle(self), py::handle(index), py::handle(val));
return handle_torch_function_no_python_arg_parser(
overridable_args,
args.ptr(),
nullptr,
func_name,
func.ptr(),
"torch.Tensor");
}
/*
* obj has a __torch_function__ implementation and may either be a
* subclass of Tensor or a Tensor-like duck type. We may need to
* append this object to the overloaded_args vector, which tracks all
* of the arguments with distinct __torch_function__ implementations
* we've seen so far.
*
* If this is the first argument we've seen with __torch_function__
* defined, we unconditionally add obj to the overloaded_args vector.
*
* If we've already seen arguments with __torch_function__ defined,
* then we first need to check if obj is the same type as any of the
* entries in overloaded_args. If so, we can ignore obj since we
* already have an entry in overloaded_args with the same
* __torch_function__ implementation.
*
* If it's a different type, we then need to check if it's a subclass
* of one of the types we've already seen. If so, we need to insert an
* entry in overloaded_args for this type with higher precedence than
* the superclass.
*
* See torch._overrides._get_overloaded_types_and_args for the equivalent
* function in the Python __torch_function__ implementation.
*
* The precedence-determining algorithm implemented in this function is
* described in NEP-0018:
* https://numpy.org/neps/nep-0018-array-function-protocol.html
*
* 'overloaded_args' is a raw pointer to a vector of pybind11 handles
* that have distinct __torch_function__ implementations, in order of calling
* precedence.
*
* 'obj' is an object to check for a __torch_function__ implementation
*
* If changing this file in a way that can affect the __torch_function__
* overhead, please report the benchmarks in 'benchmarks/overrides_benchmark'.
* See the instructions in the 'README.md' in that directory.
*
*/
static void append_overloaded_arg(
std::vector<py::handle>* overloaded_args,
PyObject* obj,
bool obj_is_type) {
bool class_not_seen_yet = true;
PyObject* obj_type = obj_is_type ? obj : (PyObject*)Py_TYPE(obj);
for (auto& arg : *overloaded_args) {
if (obj_type == get_type_of_overloaded_arg(arg.ptr())) {
// obj is the same type as another parameter we've seen in a prior
// iteration of the loop over parameters so we already have an entry
// with the proper __torch_function__ implementation to call, so skip
// this parameter
class_not_seen_yet = false;
break;
}
}
if (class_not_seen_yet) {
int arg_index = overloaded_args->size();
for (const auto j : c10::irange(arg_index)) {
if (PyObject_IsSubclass(
obj_type,
(PyObject*)(get_type_of_overloaded_arg(
(*overloaded_args)[j].ptr())))) {
// obj is a subclass of another object we've seen already so its
// __torch_function__ should be called first, therefore we
// insert it into overloaded_args before the superclass
arg_index = j;
break;
}
}
// add object to overloaded_args. If it's a subclass of another class
// we've already seen it will be inserted before the superclass,
// otherwise it will be inserted at the end of the array
overloaded_args->insert(overloaded_args->begin() + arg_index, obj);
}
}
void append_overloaded_tensor(
std::vector<py::handle>* overloaded_args,
PyObject* obj) {
append_overloaded_arg(overloaded_args, obj, /*obj_is_type*/ false);
}
void append_overloaded_type(
std::vector<py::handle>* overloaded_args,
PyObject* obj) {
append_overloaded_arg(overloaded_args, obj, /*obj_is_type*/ true);
}
bool is_tensor_and_append_overloaded(
PyObject* obj,
std::vector<py::handle>* overloaded_args) {
if (THPVariable_CheckExact(obj)) {
// torch.Tensor instances (not subclasses, except for Parameter)
return true;
}
if (check_has_torch_function(obj, /*ignore_mode*/ true)) {
// tensor subclasses and unrelated objects with __torch_function__
append_overloaded_tensor(overloaded_args, obj);
return true;
} else if (THPVariable_Check(obj)) {
// tensor subclasses without __torch_function__
return true;
}
return false;
}
bool is_scalar_list(PyObject* obj) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
for (const auto idx : c10::irange(size)) {
PyObject* iobj =
tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
if (!THPUtils_checkScalar(iobj)) {
return false;
}
}
return true;
}
bool is_tensor_list_and_append_overloaded(
PyObject* obj,
std::vector<py::handle>* overloaded_args,
int argnum,
bool throw_error) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
for (long idx = 0; idx < size; idx++) {
PyObject* iobj =
tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
if (!is_tensor_and_append_overloaded(iobj, overloaded_args)) {
if (throw_error) {
throw TypeError(
"expected Tensor as element %d in argument %d, but got %s",
static_cast<int>(idx),
argnum,
Py_TYPE(iobj)->tp_name);
}
return false;
}
}
return true;
}
bool is_float_or_complex_list(PyObject* obj) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
if (size > 0) {
PyObject* iobj = tuple ? PyTuple_GET_ITEM(obj, 0) : PyList_GET_ITEM(obj, 0);
if (!THPUtils_checkDouble(iobj) && !PyComplex_Check(iobj)) {
return false;
}
}
return true;
}
static bool is_int_list(PyObject* obj, int broadcast_size) {
if (PyTuple_Check(obj) || PyList_Check(obj)) {
auto len = PySequence_Size(obj);
if (len == 0) {
return true;
}
auto item = py::reinterpret_steal<py::object>(PySequence_GetItem(obj, 0));
bool int_first = false;
if (THPUtils_checkIndex(item.ptr())) {
// we still have to check that the rest of items are NOT symint nodes
int_first = true;
}
// Make sure none of the later arguments are SymInt
// NB: do NOT check that the later arguments are ints, as this is
// BC-breaking for FX
for (int i = 1; i < len; i++) {
if (torch::is_symint_node(
py::reinterpret_steal<py::object>(PySequence_GetItem(obj, i)))) {
return false;
}
}
if (int_first) {
return true;
}
// NOTE: JIT tracer allows arbitrary scalar tensors to act as ints
// in an intlist argument. Even float or complex scalar tensors.
return (
jit::tracer::isTracing() && THPVariable_Check(item.ptr()) &&
THPVariable_Unpack(item.ptr()).sizes() == c10::IntArrayRef{});
}
// if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single
// int
return broadcast_size > 0 && THPUtils_checkLong(obj);
}
static bool is_int_or_symint(PyObject* obj) {
// THPUtils_checkIndex may call __index__ or __int__
// which may have side effects if obj is a symint node
// so we do `is_symint_node` check first
// TODO: maybe we should be using checkLong here?
return torch::is_symint_node(py::handle(obj)) || THPUtils_checkIndex(obj);
}
static bool is_int_or_symint_list(PyObject* obj, int broadcast_size) {
if (PyTuple_Check(obj) || PyList_Check(obj)) {
if (PySequence_Size(obj) == 0) {
return true;
}
auto item = py::reinterpret_steal<py::object>(PySequence_GetItem(obj, 0));
if (is_int_or_symint(item.ptr())) {
return true;
}
// NOTE: JIT tracer allows arbitrary scalar tensors to act as ints
// in an intlist argument. Even float or complex scalar tensors.
return (
jit::tracer::isTracing() && THPVariable_Check(item.ptr()) &&
THPVariable_Unpack(item.ptr()).sizes() == c10::IntArrayRef{});
}
// if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single
// int
return broadcast_size > 0 && THPUtils_checkLong(obj);
}
// argnum is needed for raising the TypeError, it's used in the error message.
auto FunctionParameter::check(
PyObject* obj,
std::vector<py::handle>& overloaded_args,
int argnum) -> bool {
switch (type_) {
case ParameterType::TENSOR: {
if (is_tensor_and_append_overloaded(obj, &overloaded_args)) {
return true;
}
if (allow_numbers_as_tensors) {
return THPUtils_checkScalar(obj);
}
return false;
}
case ParameterType::SCALAR:
if (THPUtils_checkScalar(obj)) {
return true;
}
// fallthrough
case ParameterType::COMPLEX:
if (PyComplex_Check(obj)) {
return true;
}
// fallthrough
case ParameterType::DOUBLE: {
if (THPUtils_checkDouble(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
return !var.requires_grad() && var.dim() == 0;
}
return false;
}
case ParameterType::INT64: {
if (THPUtils_checkLong(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
return at::isIntegralType(var.scalar_type(), /*includeBool=*/false) &&
!var.requires_grad() && var.dim() == 0;
}
return false;
}
case ParameterType::DIMNAME:
return THPUtils_checkDimname(obj);
case ParameterType::DIMNAME_LIST: {
if (THPUtils_checkDimnameList(obj)) {
return true;
}
// if a size is specified (e.g. DimnameList[1]) we also allow passing a
// single Dimname
return size == 1 && THPUtils_checkDimname(obj);
}
case ParameterType::TENSOR_LIST: {
return is_tensor_list_and_append_overloaded(
obj, &overloaded_args, argnum, true /* throw_error */);
}
case ParameterType::INT_LIST:
return is_int_list(obj, size);
case ParameterType::FLOAT_LIST:
return is_float_or_complex_list(obj);
case ParameterType::GENERATOR:
return THPGenerator_Check(obj);
case ParameterType::BOOL:
return PyBool_Check(obj);
case ParameterType::STORAGE:
return isStorage(obj);
case ParameterType::PYOBJECT:
return true;
case ParameterType::SCALARTYPE:
return THPDtype_Check(obj) || THPPythonScalarType_Check(obj);
case ParameterType::LAYOUT:
return THPLayout_Check(obj);
case ParameterType::MEMORY_FORMAT:
return THPMemoryFormat_Check(obj);
case ParameterType::QSCHEME:
return THPQScheme_Check(obj);
case ParameterType::DEVICE:
return THPUtils_checkLong(obj) || THPUtils_checkString(obj) ||
THPDevice_Check(obj);
case ParameterType::STREAM:
return THPStream_Check(obj);
case ParameterType::STRING:
return THPUtils_checkString(obj);
default:
throw std::runtime_error("unknown parameter type");
case ParameterType::SCALAR_LIST: {
return is_scalar_list(obj);
}
case ParameterType::SYM_INT: {
return is_int_or_symint(obj);
}
case ParameterType::SYM_INT_LIST: {
return is_int_or_symint_list(obj, size);
}
}
}
std::string FunctionParameter::type_name() const {
switch (type_) {
case ParameterType::TENSOR:
return "Tensor";
case ParameterType::SCALAR:
return "Number";
case ParameterType::INT64:
return "int";
case ParameterType::SYM_INT:
return "SymInt";
case ParameterType::DOUBLE:
return "float";
case ParameterType::COMPLEX:
return "complex";
case ParameterType::TENSOR_LIST:
return "tuple of Tensors";
case ParameterType::INT_LIST:
return "tuple of ints";
case ParameterType::FLOAT_LIST:
return "tuple of floats";
case ParameterType::GENERATOR:
return "torch.Generator";
case ParameterType::BOOL:
return "bool";
case ParameterType::STORAGE:
return "torch.Storage";
case ParameterType::PYOBJECT:
return "object";
case ParameterType::SCALARTYPE:
return "torch.dtype";
case ParameterType::LAYOUT:
return "torch.layout";
case ParameterType::MEMORY_FORMAT:
return "torch.memory_format";
case ParameterType::QSCHEME:
return "torch.qscheme";
case ParameterType::DEVICE:
return "torch.device";
case ParameterType::STRING:
return "str";
case ParameterType::DIMNAME:
return "name";
case ParameterType::DIMNAME_LIST:
return "tuple of names";
case ParameterType::SCALAR_LIST:
return "tuple of Scalars";
case ParameterType::SYM_INT_LIST:
return "tuple of SymInts";
default:
throw std::runtime_error("unknown parameter type");
}
}
static inline c10::optional<int64_t> parse_as_integer(const std::string& s) {
if (s.empty())
return c10::nullopt;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
char* str_end;
long ans = strtol(s.c_str(), &str_end, 0);
// *str_end == 0 if the entire string was parsed as an integer.
return (*str_end == 0) ? c10::optional<int64_t>(ans) : c10::nullopt;
}
/*
Parse default value of IntArrayRef declared at native_functions.yaml
There are two kinds of default values:
1. IntArrayRef[2] x=1 (where size=2, value={1,1}
2. IntArrayRef x={1,2,3} (where size=3, value={1,2,3}, note that there cannot be
space after comma since native_parse.py uses ', ' to split args)
*/
static inline std::vector<int64_t> parse_intlist_args(
const std::string& s,
int64_t size) {
size_t n = s.size();
if (s.empty())
return std::vector<int64_t>();
// case 1. s is an int (e.g., s=2)
if (s[0] != '{') {
return std::vector<int64_t>(size, std::stol(s));
}
// case 2. s is a list of dims (e.g., s={1,2})
// since already checked left brace '{' above, here only checks right brace
// '}'
TORCH_CHECK(
s[n - 1] == '}',
"Default value of IntArrayRef is missing right brace '}', found ",
s[n - 1]);
auto args = std::vector<int64_t>();
std::istringstream ss(s.substr(1, s.length() - 2)); // exclude '{' and '}'
std::string tok;
while (std::getline(ss, tok, ',')) {
args.emplace_back(std::stol(tok));
}
return args;
}
// Parse a string literal to remove quotes and escape sequences
static std::string parse_string_literal(c10::string_view str) {
TORCH_CHECK(str.length() >= 2, "String defaults must be quoted");
if (str.front() == '"') {
TORCH_CHECK(
str.back() == '"', "Mismatched quotes in string default: ", str);
} else {
TORCH_CHECK(
str.front() == '\'' && str.back() == '\'',
"Invalid quotes in string default: ",
str)
}
std::string parsed;
parsed.reserve(str.size());
for (size_t i = 1; i < str.size() - 1;) {
if (str[i] != '\\') {
parsed.push_back(str[i]);
++i;
continue;
}
// Handle escape sequences
TORCH_CHECK(
i < str.size() - 2, "String ends with escaped final quote: ", str)
char c = str[i + 1];
switch (c) {
case '\\':
case '\'':
case '\"':
break;
case 'a':
c = '\a';
break;
case 'b':
c = '\b';
break;
case 'f':
c = '\f';
break;
case 'n':
c = '\n';
break;
case 'v':
c = '\v';
break;
case 't':
c = '\t';
break;
default:
TORCH_CHECK(
false,
"Unsupported escape sequence in string default: \\",
str[i + 1]);
}
parsed.push_back(c);
i += 2;
}
return parsed;
}
void FunctionParameter::set_default_str(const std::string& str) {
if (str == "None") {
allow_none = true;
}
if (type_ == ParameterType::TENSOR) {
if (str != "None") {
throw std::runtime_error(
"default value for Tensor must be none, got: " + str);
}
} else if (type_ == ParameterType::INT64) {
default_int = atol(str.c_str());
} else if (type_ == ParameterType::BOOL) {
default_bool = (str == "True" || str == "true");
} else if (type_ == ParameterType::DOUBLE) {
default_double = atof(str.c_str());
} else if (type_ == ParameterType::COMPLEX) {
default_complex[0] = atof(str.c_str()); // TODO: parse "x + xj"?
default_complex[1] = 0;
} else if (type_ == ParameterType::SCALAR) {
if (str != "None") {
// we sometimes rely on integer-vs-float values, e.g. with arange.
const auto as_integer = parse_as_integer(str);
default_scalar = as_integer.has_value() ? at::Scalar(as_integer.value())
: at::Scalar(atof(str.c_str()));
}
} else if (type_ == ParameterType::INT_LIST) {
if (str != "None") {
default_intlist = parse_intlist_args(str, size);
}
} else if (type_ == ParameterType::FLOAT_LIST) {
if (str != "None") {
throw std::runtime_error("Defaults not supported for float[]");
}
} else if (type_ == ParameterType::SCALARTYPE) {
if (str == "None") {
default_scalartype = at::ScalarType::Undefined;
} else if (str == "torch.int64") {
default_scalartype = at::ScalarType::Long;
} else {
throw std::runtime_error("invalid default value for ScalarType: " + str);
}
} else if (type_ == ParameterType::LAYOUT) {
if (str == "None") {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(allow_none);
} else if (str == "torch.strided") {
default_layout = at::Layout::Strided;
} else if (str == "torch.sparse_coo") {
default_layout = at::Layout::Sparse;
} else {
throw std::runtime_error("invalid default value for layout: " + str);
}
} else if (type_ == ParameterType::DEVICE) {
if (str != "None") {
throw std::runtime_error("invalid device: " + str);
}
} else if (type_ == ParameterType::STREAM) {
if (str != "None") {
throw std::runtime_error("invalid stream: " + str);
}
} else if (type_ == ParameterType::STRING) {
if (str != "None") {
default_string = parse_string_literal(str);
}
}
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionSignature::FunctionSignature(const std::string& fmt, int index)
: min_args(0),
max_args(0),
max_pos_args(0),
index(index),
hidden(false),
deprecated(false) {
auto open_paren = fmt.find('(');
if (open_paren == std::string::npos) {
throw std::runtime_error("missing opening parenthesis: " + fmt);
}
name = fmt.substr(0, open_paren);
bool allow_numbers_as_tensors = should_allow_numbers_as_tensors(name);
auto last_offset = open_paren + 1;
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
auto next_offset = last_offset;
bool keyword_only = false;
bool done = false;
while (!done) {
auto offset = fmt.find(", ", last_offset);
if (offset == std::string::npos) {
offset = fmt.find(')', last_offset);
done = true;
next_offset = offset + 1;
// this 'if' happens for an empty parameter list, i.e. fn().
if (offset == last_offset) {
last_offset = next_offset;
break;
}
} else {
next_offset = offset + 2;
}
if (offset == std::string::npos) {
throw std::runtime_error("missing closing parenthesis: " + fmt);
}
if (offset == last_offset) {
throw std::runtime_error("malformed signature: " + fmt);
}
auto param_str = fmt.substr(last_offset, offset - last_offset);
last_offset = next_offset;
if (param_str == "*") {
keyword_only = true;
} else {
params.emplace_back(param_str, keyword_only);
params.back().allow_numbers_as_tensors = allow_numbers_as_tensors;
}
}
if (fmt.substr(last_offset) == "|deprecated") {
hidden = true;
// TODO: raise warning when parsing deprecated signatures
deprecated = true;
} else if (fmt.substr(last_offset) == "|hidden") {
hidden = true;
}
max_args = params.size();
// count the number of non-optional args
for (auto& param : params) {
if (!param.optional) {
min_args++;
}
if (!param.keyword_only) {
max_pos_args++;
}
}
}
std::string FunctionSignature::toString() const {
// TODO: consider printing more proper schema strings with defaults,
// optionals, etc.
std::ostringstream ss;
bool keyword_already = false;
ss << "(";
int i = 0;
for (auto& param : params) {
if (i != 0) {
ss << ", ";
}
if (param.keyword_only && !keyword_already) {
ss << "*, ";
keyword_already = true;
}
ss << param.type_name() << " " << param.name;
i++;
}
ss << ")";
return ss.str();
}
[[noreturn]] static void extra_args(
const FunctionSignature& signature,
Py_ssize_t nargs) {
const long max_pos_args = signature.max_pos_args;
const long min_args = signature.min_args;
const long nargs_ = nargs;
if (min_args != max_pos_args) {
throw TypeError(
"%s() takes from %ld to %ld positional arguments but %ld were given",
signature.name.c_str(),
min_args,
max_pos_args,
nargs_);
}
throw TypeError(
"%s() takes %ld positional argument%s but %ld %s given",
signature.name.c_str(),
max_pos_args,
max_pos_args == 1 ? "" : "s",
nargs_,
nargs == 1 ? "was" : "were");
}
[[noreturn]] static void missing_args(
const FunctionSignature& signature,
int idx) {
int num_missing = 0;
std::stringstream ss;
auto& params = signature.params;
for (auto it = params.begin() + idx; it != params.end(); ++it) {
if (!it->optional) {
if (num_missing > 0) {
ss << ", ";
}
ss << '"' << it->name << '"';
num_missing++;
}
}
throw TypeError(
"%s() missing %d required positional argument%s: %s",
signature.name.c_str(),
num_missing,
num_missing == 1 ? "s" : "",
ss.str().c_str());
}
static Py_ssize_t find_param(FunctionSignature& signature, PyObject* name) {
Py_ssize_t i = 0;
for (auto& param : signature.params) {
int cmp = PyObject_RichCompareBool(name, param.python_name, Py_EQ);
if (cmp < 0) {
throw python_error();
} else if (cmp) {
return i;
}
i++;
}
return -1;
}
[[noreturn]] static void extra_kwargs(
FunctionSignature& signature,
PyObject* kwargs,
Py_ssize_t num_pos_args) {
PyObject* key = nullptr;
PyObject* value = nullptr;
Py_ssize_t pos = 0;
while (PyDict_Next(kwargs, &pos, &key, &value)) {
if (!THPUtils_checkString(key)) {
throw TypeError("keywords must be strings");
}
auto param_idx = find_param(signature, key);
if (param_idx < 0) {
throw TypeError(
"%s() got an unexpected keyword argument '%s'",
signature.name.c_str(),
THPUtils_unpackString(key).c_str());
}
if (param_idx < num_pos_args) {
throw TypeError(
"%s() got multiple values for argument '%s'",
signature.name.c_str(),
THPUtils_unpackString(key).c_str());
}
}
// this should never be hit
throw TypeError("invalid keyword arguments");
}
bool FunctionSignature::parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* dst[], // NOLINT
bool raise_exception) {
size_t nargs = args ? PyTuple_GET_SIZE(args) : 0;
auto remaining_kwargs = kwargs ? PyDict_Size(kwargs) : 0;
size_t arg_pos = 0;
bool allow_varargs_intlist = false;
// if there is a single positional IntArrayRef argument, i.e. expand(..),
// view(...), allow a var-args style IntArrayRef, so expand(5,3) behaves as
// expand((5,3))
int int_list_overload = false;
if (max_pos_args == 1 &&
(params[0].type_ == ParameterType::INT_LIST ||
params[0].type_ == ParameterType::SYM_INT_LIST)) {
allow_varargs_intlist = true;
if (params[0].type_ == ParameterType::INT_LIST) {
int_list_overload = true;
}
}
if (nargs > max_pos_args && !allow_varargs_intlist) {
if (raise_exception) {
// foo() takes takes 2 positional arguments but 3 were given
extra_args(*this, nargs);
}
return false;
}
if (!overloaded_args.empty()) {
overloaded_args.clear();
}
int i = 0;
if (self != nullptr && check_has_torch_function(self, /*ignore_mode*/ true)) {
append_overloaded_tensor(&this->overloaded_args, self);
}
for (auto& param : params) {
PyObject* obj = nullptr;
bool is_kwd = false;
if (arg_pos < nargs) {
// extra positional args given after single positional IntArrayRef arg
if (param.keyword_only) {
if (raise_exception) {
extra_args(*this, nargs);
}
return false;
}
obj = PyTuple_GET_ITEM(args, arg_pos);
} else if (kwargs) {
obj = PyDict_GetItem(kwargs, param.python_name);
for (PyObject* numpy_name : param.numpy_python_names) {
if (obj) {
break;
}
obj = PyDict_GetItem(kwargs, numpy_name);
}
is_kwd = true;
}
if ((!obj && param.optional) || (obj == Py_None && param.allow_none)) {
dst[i++] = nullptr;
} else if (!obj) {
if (raise_exception) {
// foo() missing 1 required positional argument: "b"
missing_args(*this, i);
}
return false;
} else if (param.check(obj, this->overloaded_args, i)) {
dst[i++] = obj;
// XXX: the Variable check is necessary because sizes become tensors when
// tracer is enabled. This behavior easily leads to ambiguities, and we
// should avoid having complex signatures that make use of it...
} else if (
allow_varargs_intlist && arg_pos == 0 && !is_kwd &&
((int_list_overload ? is_int_list(args, param.size)
: is_int_or_symint_list(args, param.size)))) {
// take all positional arguments as this parameter
// e.g. permute(1, 2, 3) -> permute((1, 2, 3))
dst[i++] = args;
arg_pos = nargs;
continue;
} else if (raise_exception) {
if (is_kwd) {
// foo(): argument 'other' must be str, not int
throw TypeError(
"%s(): argument '%s' must be %s, not %s",
name.c_str(),
param.name.c_str(),
param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
} else {
// foo(): argument 'other' (position 2) must be str, not int
throw TypeError(
"%s(): argument '%s' (position %ld) must be %s, not %s",
name.c_str(),
param.name.c_str(),
static_cast<long>(arg_pos + 1),
param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
}
} else {
return false;
}
if (!is_kwd) {
arg_pos++;
} else if (obj) {
remaining_kwargs--;
}
}
if (remaining_kwargs > 0) {
if (raise_exception) {
// foo() got an unexpected keyword argument "b"
extra_kwargs(*this, kwargs, nargs);
}
return false;
}
return true;
}
PythonArgParser::PythonArgParser(std::vector<std::string> fmts, bool traceable)
: max_args(0), traceable(traceable) {
int index = 0;
for (auto& fmt : fmts) {
signatures_.emplace_back(fmt, index);
++index;
}
for (auto& signature : signatures_) {
if (signature.max_args > max_args) {
max_args = signature.max_args;
}
}
if (signatures_.size() > 0) {
function_name = signatures_[0].name;
}
// Check deprecated signatures last
std::stable_partition(
signatures_.begin(), signatures_.end(), [](const FunctionSignature& sig) {
return !sig.deprecated;
});
}
void PythonArgParser::check_deprecated(const FunctionSignature& signature) {
if (signature.deprecated) {
auto msg = c10::str(
"This overload of ",
signature.name,
" is deprecated:\n\t",
signature.name,
signature.toString());
auto signatures = get_signatures();
if (!signatures.empty()) {
msg += "\nConsider using one of the following signatures instead:";
for (const auto& sig : signatures) {
msg += "\n\t";
msg += signature.name;
msg += sig;
}
}
TORCH_WARN_ONCE(msg);
}
}
PythonArgs PythonArgParser::raw_parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]) { // NOLINT
if (signatures_.size() == 1) {
auto& signature = signatures_[0];
signature.parse(self, args, kwargs, parsed_args, true);
check_deprecated(signature);
return PythonArgs(traceable, signature, parsed_args);
}
for (auto& signature : signatures_) {
if (signature.parse(self, args, kwargs, parsed_args, false)) {
check_deprecated(signature);
return PythonArgs(traceable, signature, parsed_args);
}
}
print_error(self, args, kwargs, parsed_args);
}
void PythonArgParser::print_error(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]) { // NOLINT
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
size_t num_args = PyTuple_GET_SIZE(args) + (kwargs ? PyDict_Size(kwargs) : 0);
std::vector<unsigned> plausible_idxs;
unsigned i = 0;
for (auto& signature : signatures_) {
if (num_args >= signature.min_args && num_args <= signature.max_args &&
!signature.hidden) {
plausible_idxs.push_back(i);
}
i++;
}
if (plausible_idxs.size() == 1) {
auto& signature = signatures_[plausible_idxs[0]];
signature.parse(self, args, kwargs, parsed_args, true);
}
auto options = get_signatures();
auto msg =
torch::format_invalid_args(args, kwargs, function_name + "()", options);
throw TypeError("%s", msg.c_str());
}
std::vector<std::string> PythonArgParser::get_signatures() const {
std::vector<std::string> options;
for (auto& signature : signatures_) {
if (!signature.hidden) {
options.push_back(signature.toString());
}
}
return options;
}
at::Tensor PythonArgs::tensor_slow(int i) {
PyObject* obj = args[i];
if (!obj) {
return at::Tensor();
}
if (THPVariable_Check(obj)) {
return THPVariable_Unpack(obj);
}
bool save_symint = false;
at::Scalar scalar;
if (PyBool_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackBool(obj));
} else if (THPUtils_checkLong(obj)) {
scalar = at::Scalar(THPUtils_unpackLong(obj));
} else if (PyComplex_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackComplexDouble(obj));
} else if (THPUtils_checkDouble(obj)) {
scalar = at::Scalar(THPUtils_unpackDouble(obj));
// NB: we DO NOT put symbolic ints/floats into the Scalar itself,
// because although Scalar supports SymInt/SymFloat, the subsequent
// conversion to Tensor does not. Instead, do it out of band.
} else if (torch::is_symint_node(py::handle(obj))) {
save_symint = true;
// This scalar value doesn't matter, it shouldn't ever actually
// get read out. Make it a big and weird looking number to help
// people figure out if there's aproblem.
scalar = at::Scalar(7777777);
} else if (torch::is_symfloat_node(py::handle(obj))) {
save_symint = true;
scalar = at::Scalar(std::numeric_limits<double>::quiet_NaN());
} else {
// NB: Are you here because you passed None to a Variable method,
// and you expected an undefined tensor to be returned? Don't add
// a test for Py_None here; instead, you need to mark the argument
// as *allowing none*; you can do this by writing 'Tensor?' instead
// of 'Tensor' in the ATen metadata.
throw TypeError(
"expected Tensor as argument %d, but got %s", i, Py_TYPE(obj)->tp_name);
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
at::Tensor tensor = scalar_to_tensor(scalar);
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
if (save_symint) {
auto py_tensor = py::cast(tensor);
if (PyObject_SetAttrString(py_tensor.ptr(), "_wrapped_number", obj) < 0) {
throw python_error();
}
}
return tensor;
}
at::Scalar PythonArgs::scalar_slow(int i) {
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, c10::NumberType::get());
}
return scalar_slow(args[i]);
}
at::Scalar PythonArgs::scalar_slow(PyObject* arg) {
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't
// currently handle most NumPy scalar types except np.float64.
if (THPVariable_Check(arg)) {
return THPVariable_Unpack(arg).item();
}
if (THPUtils_checkLong(arg)) {
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg)));
}
if (PyBool_Check(arg)) {
return at::Scalar(THPUtils_unpackBool(arg));
}
if (PyComplex_Check(arg)) {
return at::Scalar(THPUtils_unpackComplexDouble(arg));
}
if (torch::is_symint_node(arg)) {
return at::Scalar(py::cast<c10::SymInt>(arg));
}
if (torch::is_symfloat_node(arg)) {
return at::Scalar(py::cast<c10::SymFloat>(arg));
}
return at::Scalar(THPUtils_unpackDouble(arg));
}
} // namespace torch
|