File: python_arg_parser.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1283 lines) | stat: -rw-r--r-- 39,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
#pragma once

// Parse arguments to Python functions implemented in C++
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
// the types relevant to PyTorch and distinguishes between overloaded function
// signatures.
//
// Example:
//
//   static PythonArgParser parser({
//     "norm(Scalar p, int64_t dim, bool keepdim=False)",
//     "norm(Scalar p=2)",
//   });
//   ParsedArgs<3> parsed_args;
//   auto r = parser.parse(args, kwargs, parsed_args);
//   if (r.idx == 0) {
//     norm(r.scalar(0), r.int64(1), r.bool(0));
//   } else {
//     norm(r.scalar(0));
//   }
//
// We auto-generate most uses of PythonArgParser; the generated files
// are torch/csrc/autograd/generated/python_*.cpp
//
// Some gotchas that you should watch out for:
//
//    - Note [Order of overloads matters]
//      Order of overloads matters.  A set of input arguments may
//      bind to multiple argument specs; we will always pick the
//      first one in PythonArgParser.  However, when you are writing
//      overloads in, e.g., native_functions.yaml, you don't have to
//      worry about what order you write them, because the code
//      generation logic always gives the overloads a canonical
//      order, where Tensor overloads come first, before Scalar overloads.
//      This logic is in sort_declarations in
//      tools/autograd/gen_python_functions.py
//
//    - Zero-dim tensors (e.g., torch.tensor(2)) bind to both
//      Scalar and Tensor, UNLESS they require grad (in which case
//      they only bind to Tensor).

#include <pybind11/pytypes.h>
#include <torch/csrc/python_headers.h>

#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/python_dimname.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/six.h>

#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/core/Tensor.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>

#include <c10/core/SymFloat.h>
#include <c10/core/SymIntNodeImpl.h>

#include <array>
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include <vector>

namespace torch {

inline bool is_symint_node(py::handle obj) {
  auto static tp_symn = py::type::of<c10::SymIntNodeImpl>();
  if (py::isinstance(obj, tp_symn)) {
    TORCH_CHECK(
        !jit::tracer::isTracing(), "JIT tracing of SymInts isn't supported!");
    return true;
  }
  return false;
}

inline bool is_symfloat_node(py::handle obj) {
  auto static tp_symn = py::type::of<c10::SymFloatNodeImpl>();
  if (py::isinstance(obj, tp_symn)) {
    TORCH_CHECK(
        !jit::tracer::isTracing(), "JIT tracing of SymFloats isn't supported!");
    return true;
  }
  return false;
}

} // namespace torch

namespace pybind11 {
namespace detail {
template <>
struct type_caster<c10::SymInt> {
 public:
  PYBIND11_TYPE_CASTER(c10::SymInt, _("SymInt"));
  bool load(py::handle src, bool) {
    if (torch::is_symint_node(src)) {
      value = src.cast<c10::SymIntNodeImpl*>()->toSymInt();
      return true;
    }

    auto raw_obj = src.ptr();
    if (THPUtils_checkIndex(raw_obj)) {
      value = c10::SymInt{THPUtils_unpackIndex(raw_obj)};
      return true;
    }
    return false;
  }

  static py::handle cast(
      c10::SymInt si,
      return_value_policy /* policy */,
      handle /* parent */) {
    return si.is_symbolic() ? py::cast(si.toSymIntNodeImpl()).release()
                            : py::cast(si.expect_int()).release();
  }
};

template <>
struct type_caster<c10::SymFloat> {
 public:
  PYBIND11_TYPE_CASTER(c10::SymFloat, _("SymFloat"));
  bool load(py::handle src, bool) {
    if (torch::is_symfloat_node(src)) {
      value = src.cast<c10::SymFloatNodeImpl*>()->toSymFloat();
      return true;
    }

    auto raw_obj = src.ptr();
    if (THPUtils_checkDouble(raw_obj)) {
      value = c10::SymFloat{THPUtils_unpackDouble(raw_obj)};
      return true;
    }
    return false;
  }

  static py::handle cast(
      c10::SymFloat si,
      return_value_policy /* policy */,
      handle /* parent */) {
    return si.is_symbolic() ? py::cast(si.toSymFloatNodeImpl()).release()
                            : py::cast(si.expect_float()).release();
  }
};
} // namespace detail
} // namespace pybind11

inline bool THPUtils_checkScalar(PyObject* obj) {
#ifdef USE_NUMPY
  if (torch::utils::is_numpy_scalar(obj)) {
    return true;
  }
#endif
  return PyFloat_Check(obj) || PyLong_Check(obj) || PyComplex_Check(obj) ||
      torch::is_symint_node(py::handle(obj)) ||
      torch::is_symfloat_node(py::handle(obj));
}

namespace torch {

bool should_allow_numbers_as_tensors(const std::string& name);

enum class ParameterType {
  TENSOR,
  SCALAR,
  INT64,
  SYM_INT,
  DOUBLE,
  COMPLEX,
  TENSOR_LIST,
  INT_LIST,
  GENERATOR,
  BOOL,
  STORAGE,
  PYOBJECT,
  SCALARTYPE,
  LAYOUT,
  MEMORY_FORMAT,
  DEVICE,
  STREAM,
  STRING,
  DIMNAME,
  DIMNAME_LIST,
  QSCHEME,
  FLOAT_LIST,
  SCALAR_LIST,
  SYM_INT_LIST
};

struct FunctionParameter;
struct FunctionSignature;
struct PythonArgs;

// Contains bound Python arguments in declaration order
template <int N>
struct ParsedArgs {
  ParsedArgs() : args() {}
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
  PyObject* args[N];
};

struct PythonArgParser {
  explicit PythonArgParser(
      std::vector<std::string> fmts,
      bool traceable = false);

  // meant only for `torch` functions.
  template <int N>
  inline PythonArgs parse(
      PyObject* self,
      PyObject* args,
      PyObject* kwargs,
      ParsedArgs<N>& dst);

  template <int N>
  inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);

  inline PythonArgs parse(PyObject* self, ParsedArgs<0>& dst);

  // Formatted strings of non-hidden signatures
  std::vector<std::string> get_signatures() const;

 private:
  [[noreturn]]
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
  void
  print_error(
      PyObject* self,
      PyObject* args,
      PyObject* kwargs,
      PyObject* parsed_args[]);
  void check_deprecated(const FunctionSignature& signature);
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
  PythonArgs raw_parse(
      PyObject* self,
      PyObject* args,
      PyObject* kwargs,
      PyObject* parsed_args[]);

  std::vector<FunctionSignature> signatures_;
  std::string function_name;
  size_t max_args;
  bool traceable;
};

struct PYBIND11_EXPORT FunctionSignature {
  explicit FunctionSignature(const std::string& fmt, int index);

  // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
  bool parse(
      PyObject* self,
      PyObject* args,
      PyObject* kwargs,
      PyObject* dst[],
      bool raise_exception);

  std::string toString() const;

  std::string name;
  std::vector<FunctionParameter> params;
  std::vector<py::handle> overloaded_args;
  size_t min_args;
  size_t max_args;
  size_t max_pos_args;
  int index;
  bool hidden;
  bool deprecated;
  bool disable_torch_function;
};

struct PythonArgs {
  PythonArgs(
      bool traceable,
      const FunctionSignature& signature,
      PyObject** args)
      : idx(signature.index),
        traceable(traceable),
        signature(signature),
        args(args) {}

  int idx;
  bool traceable;
  const FunctionSignature& signature;
  PyObject** args;

  inline bool has_torch_function();
  inline std::string get_func_name();
  inline at::Tensor tensor(int i);
  inline c10::optional<at::Tensor> optionalTensor(int i);
  inline at::Scalar scalar(int i);
  inline at::Scalar scalarWithDefault(int i, const at::Scalar& default_scalar);
  inline std::vector<at::Scalar> scalarlist(int i);
  inline std::vector<at::Tensor> tensorlist(int i);
  inline torch::List<c10::optional<at::Tensor>> list_of_optional_tensors(int i);
  template <int N>
  inline std::array<at::Tensor, N> tensorlist_n(int i);
  inline std::vector<int64_t> intlist(int i);
  inline std::vector<c10::SymInt> symintlist(int i);
  inline c10::OptionalArray<int64_t> intlistOptional(int i);
  inline c10::OptionalArray<c10::SymInt> symintlistOptional(int i);
  inline std::vector<int64_t> intlistWithDefault(
      int i,
      std::vector<int64_t> default_intlist);
  inline c10::optional<at::Generator> generator(int i);
  inline at::Storage storage(int i);
  inline at::Storage storage(
      int i,
      at::ScalarType& storage_scalar_type,
      bool& is_typed_storage);
  inline c10::Stream stream(int i);
  inline at::ScalarType scalartype(int i);
  inline at::ScalarType scalartypeWithDefault(
      int i,
      at::ScalarType default_scalartype);
  inline c10::optional<at::ScalarType> scalartypeOptional(int i);
  inline c10::optional<at::Scalar> scalarOptional(int i);
  inline c10::optional<int64_t> toInt64Optional(int i);
  inline c10::optional<c10::SymInt> toSymIntOptional(int i);
  inline c10::optional<bool> toBoolOptional(int i);
  inline c10::optional<double> toDoubleOptional(int i);
  inline c10::OptionalArray<double> doublelistOptional(int i);
  inline std::vector<double> doublelist(int i);
  inline std::vector<double> getDoublelist(int i);
  inline at::Layout layout(int i);
  inline at::Layout layoutWithDefault(int i, at::Layout default_layout);
  inline c10::optional<at::Layout> layoutOptional(int i);
  inline at::Device device(int i);
  inline at::Device deviceWithDefault(int i, const at::Device& default_device);
  inline c10::optional<at::Device> deviceOptional(int i);
  inline at::Dimname dimname(int i);
  inline std::vector<at::Dimname> dimnamelist(int i);
  inline c10::optional<std::vector<at::Dimname>> toDimnameListOptional(int i);
  inline at::MemoryFormat memoryformat(int i);
  inline c10::optional<at::MemoryFormat> memoryformatOptional(int i);
  inline at::QScheme toQScheme(int i);
  inline std::string string(int i);
  inline std::string stringWithDefault(int i, const std::string& default_str);
  inline c10::optional<std::string> stringOptional(int i);
  inline c10::string_view stringView(int i);
  inline c10::string_view stringViewWithDefault(
      int i,
      const c10::string_view default_str);
  inline c10::optional<c10::string_view> stringViewOptional(int i);
  inline PyObject* pyobject(int i);
  inline int64_t toInt64(int i);
  inline c10::SymInt toSymInt(int i);
  inline int64_t toInt64WithDefault(int i, int64_t default_int);
  inline double toDouble(int i);
  inline double toDoubleWithDefault(int i, double default_double);
  inline c10::complex<double> toComplex(int i);
  inline c10::complex<double> toComplexWithDefault(
      int i,
      c10::complex<double> default_complex);
  inline bool toBool(int i);
  inline bool toBoolWithDefault(int i, bool default_bool);
  inline bool isNone(int i);

 private:
  at::Tensor tensor_slow(int i);
  at::Scalar scalar_slow(int i);
  at::Scalar scalar_slow(PyObject* arg);
};

struct FunctionParameter {
  FunctionParameter(const std::string& fmt, bool keyword_only);

  bool check(
      PyObject* obj,
      std::vector<py::handle>& overloaded_args,
      int argnum);

  void set_default_str(const std::string& str);
  std::string type_name() const;

  ParameterType type_;
  bool optional;
  bool allow_none;
  bool keyword_only;
  bool allow_numbers_as_tensors = false;
  int size;
  std::string name;
  // having this as a raw PyObject * will presumably leak it, but these are only
  // held by static objects anyway, and Py_Finalize can already be called when
  // this is destructed.
  PyObject* python_name;
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
  at::SmallVector<PyObject*, 5> numpy_python_names;
  at::Scalar default_scalar;
  std::vector<int64_t> default_intlist;
  std::string default_string;
  union {
    bool default_bool;
    int64_t default_int;
    double default_double;
    // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
    double default_complex[2]; // see Scalar
    at::ScalarType default_scalartype;
    at::Layout default_layout;
  };
};

template <int N>
inline PythonArgs PythonArgParser::parse(
    PyObject* self,
    PyObject* args,
    PyObject* kwargs,
    ParsedArgs<N>& dst) {
  if (N < max_args) {
    throw ValueError(
        "PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)",
        (int)max_args,
        N);
  }
  return raw_parse(self, args, kwargs, dst.args);
}

template <int N>
inline PythonArgs PythonArgParser::parse(
    PyObject* args,
    PyObject* kwargs,
    ParsedArgs<N>& dst) {
  return parse(nullptr, args, kwargs, dst);
}

inline PythonArgs PythonArgParser::parse(PyObject* self, ParsedArgs<0>& dst) {
  return parse(self, nullptr, nullptr, dst);
}

inline bool PythonArgs::has_torch_function() {
  return !this->signature.overloaded_args.empty() ||
      at::impl::PythonTorchFunctionTLS::get_mode();
}

inline std::string PythonArgs::get_func_name() {
  return signature.name;
}

// TODO: this can return MaybeOwned
inline at::Tensor PythonArgs::tensor(int i) {
  if (args[i] && THPVariable_CheckExact(args[i])) {
    return THPVariable_Unpack(args[i]);
  }
  return tensor_slow(i);
}

inline c10::optional<at::Tensor> PythonArgs::optionalTensor(int i) {
  at::Tensor t = tensor(i);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  if (t.defined()) {
    return t;
  } else {
    return c10::nullopt;
  }
}

inline at::Scalar PythonArgs::scalar(int i) {
  if (!args[i])
    return signature.params[i].default_scalar;
  return scalar_slow(i);
}

inline std::vector<at::Scalar> PythonArgs::scalarlist(int i) {
  if (!args[i])
    return std::vector<at::Scalar>();
  auto tuple = six::isTuple(args[i]);
  THPObjectPtr arg = six::maybeAsTuple(args[i]);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<at::Scalar> res(size);
  for (const auto idx : c10::irange(size)) {
    PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
                          : PyList_GET_ITEM(arg.get(), idx);
    res[idx] = scalar_slow(obj);
  }
  return res;
}

inline at::Scalar PythonArgs::scalarWithDefault(
    int i,
    const at::Scalar& default_scalar) {
  if (!args[i])
    return default_scalar;
  return scalar_slow(i);
}

inline c10::optional<at::Scalar> PythonArgs::scalarOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return scalar_slow(i);
}

inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
  if (!args[i])
    return std::vector<at::Tensor>();
  auto tuple = six::isTuple(args[i]);
  THPObjectPtr arg = six::maybeAsTuple(args[i]);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<at::Tensor> res(size);
  for (const auto idx : c10::irange(size)) {
    PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
                          : PyList_GET_ITEM(arg.get(), idx);
    // This is checked by the argument parser so it's safe to cast without
    // checking if this is a tensor first
    res[idx] = THPVariable_Unpack(obj);
  }
  return res;
}

inline torch::List<c10::optional<at::Tensor>> PythonArgs::
    list_of_optional_tensors(int i) {
  if (!args[i])
    return torch::List<c10::optional<at::Tensor>>();
  auto tuple = six::isTuple(args[i]);
  THPObjectPtr arg = six::maybeAsTuple(args[i]);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  torch::List<c10::optional<at::Tensor>> res;
  res.reserve(size);
  for (const auto idx : c10::irange(size)) {
    PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
                          : PyList_GET_ITEM(arg.get(), idx);
    // This is checked by the argument parser so it's safe to cast without
    // checking if this is a tensor first
    res.push_back(THPVariable_Unpack(obj));
  }
  return res;
}

template <int N>
inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
  auto res = std::array<at::Tensor, N>();
  if (!args[i])
    return res;
  auto tuple = six::isTuple(args[i]);
  THPObjectPtr arg = six::maybeAsTuple(args[i]);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
  if (size != N) {
    throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
  }
  for (const auto idx : c10::irange(size)) {
    PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
                          : PyList_GET_ITEM(arg.get(), idx);
    // This is checked by the argument parser so it's safe to cast without
    // checking if this is a tensor first
    res[idx] = THPVariable_Unpack(obj);
  }
  return res;
}

inline std::vector<int64_t> PythonArgs::intlist(int i) {
  return intlistWithDefault(i, signature.params[i].default_intlist);
}

inline PyObject* toPyObject(c10::SymInt symint) {
  if (symint.is_symbolic()) {
    auto r = py::cast(symint.toSymIntNodeImpl()).release().ptr();
    TORCH_INTERNAL_ASSERT(r);
    return r;
  } else {
    return THPUtils_packInt64(symint.as_int_unchecked());
  }
}

inline void throw_intlist_exception(
    const torch::PythonArgs* args,
    size_t i,
    PyObject* obj,
    size_t idx) {
  throw TypeError(
      "%s(): argument '%s' must be %s, but found element of type %s at pos %ld",
      args->signature.name.c_str(),
      args->signature.params[i].name.c_str(),
      args->signature.params[i].type_name().c_str(),
      Py_TYPE(obj)->tp_name,
      idx + 1);
}

inline std::vector<c10::SymInt> PythonArgs::symintlist(int i) {
  if (!args[i]) {
    return c10::fmap(signature.params[i].default_intlist, [](int64_t di) {
      return c10::SymInt(di);
    });
  }

  const auto size1 = signature.params[i].size;
  if (size1 > 0 && THPUtils_checkLong(args[i])) {
    return std::vector<c10::SymInt>(
        size1, c10::SymInt(THPUtils_unpackIndex(args[i])));
  }

  if (size1 > 0 && torch::is_symint_node(py::handle(args[i]))) {
    auto si = py::handle(args[i]).cast<c10::SymIntNodeImpl*>()->toSymInt();
    return std::vector<c10::SymInt>(size1, si);
  }

  PyObject* arg = args[i];
  auto tuple = PyTuple_Check(arg);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  const auto size2 = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
  std::vector<c10::SymInt> res;
  res.reserve(size2);
  for (const auto idx : c10::irange(size2)) {
    PyObject* obj =
        tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);

    // Elements of torch.Size are tensors during tracing, and we need to
    // record extra information before they are turned into an IntArrayRef
    if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
      auto& var = THPVariable_Unpack(obj);
      jit::tracer::ArgumentStash::stashIntArrayRefElem(
          signature.params[i].name, size2, idx, var);
      try {
        res.push_back(var.item<int64_t>());
        continue;
      } catch (std::exception& e) {
        throw_intlist_exception(this, i, obj, idx);
      }
      continue;
    } else {
      // convert tensor to scalar outside of try / catch,
      // so that Tensor subclass exceptions will not be caught.
      if (THPVariable_Check(obj)) {
        auto& var = THPVariable_Unpack(obj);
        if (var.numel() != 1 ||
            !at::isIntegralType(
                var.dtype().toScalarType(), /*include_bool*/ true)) {
          throw_intlist_exception(this, i, obj, idx);
        }
        // TODO: ideally, if this was a fake tensor this would
        // result in a SymInt, but we don't have the API to do this
        res.push_back(var.item<int64_t>());
      } else {
        try {
          if (is_symint_node(py::handle(obj))) {
            res.push_back(
                py::handle(obj).cast<c10::SymIntNodeImpl*>()->toSymInt());
          } else {
            res.push_back(c10::SymInt(THPUtils_unpackIndex(obj)));
          }
        } catch (std::exception& e) {
          throw_intlist_exception(this, i, obj, idx);
        }
      }
    }
  }

  return res;
}

inline std::vector<int64_t> PythonArgs::intlistWithDefault(
    int i,
    std::vector<int64_t> default_intlist) {
  if (!args[i])
    return default_intlist;
  PyObject* arg = args[i];
  const auto size1 = signature.params[i].size;
  if (size1 > 0 && THPUtils_checkLong(arg)) {
    return std::vector<int64_t>(size1, THPUtils_unpackIndex(arg));
  }
  auto tuple = PyTuple_Check(arg);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  const auto size2 = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<int64_t> res(size2);
  for (const auto idx : c10::irange(size2)) {
    PyObject* obj =
        tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
    // Elements of torch.Size are tensors during tracing, and we need to
    // record extra information before they are turned into an IntArrayRef
    if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
      auto& var = THPVariable_Unpack(obj);
      jit::tracer::ArgumentStash::stashIntArrayRefElem(
          signature.params[i].name, size2, idx, var);
      try {
        res[idx] = var.item<int64_t>();
        continue;
      } catch (std::exception& e) {
        throw_intlist_exception(this, i, obj, idx);
      }
    } else {
      // convert tensor to scalar outside of try / catch,
      // so that Tensor subclass exceptions will not be caught.
      if (THPVariable_Check(obj)) {
        auto& var = THPVariable_Unpack(obj);
        if (var.numel() != 1 ||
            !at::isIntegralType(
                var.dtype().toScalarType(), /*include_bool*/ true)) {
          throw_intlist_exception(this, i, obj, idx);
        }
        res[idx] = var.item<int64_t>();
      } else {
        try {
          res[idx] = THPUtils_unpackIndex(obj);
        } catch (std::exception& e) {
          throw_intlist_exception(this, i, obj, idx);
        }
      }
    }
  }
  return res;
}

inline c10::OptionalArray<int64_t> PythonArgs::intlistOptional(int i) {
  if (!args[i]) {
    return {};
  }
  return intlist(i);
}

inline c10::OptionalArray<c10::SymInt> PythonArgs::symintlistOptional(int i) {
  if (!args[i]) {
    return {};
  }
  return symintlist(i);
}

inline std::vector<double> PythonArgs::getDoublelist(int i) {
  PyObject* arg = args[i];
  auto tuple = PyTuple_Check(arg);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<double> res(size);
  for (const auto idx : c10::irange(size)) {
    PyObject* obj =
        tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
    try {
      res[idx] = THPUtils_unpackDouble(obj);
    } catch (const std::exception& e) {
      throw TypeError(
          "%s(): argument '%s' must be %s, but found element of type %s at pos %ld",
          signature.name.c_str(),
          signature.params[i].name.c_str(),
          signature.params[i].type_name().c_str(),
          Py_TYPE(obj)->tp_name,
          idx + 1);
    }
  }
  return res;
}

inline c10::OptionalArray<double> PythonArgs::doublelistOptional(int i) {
  if (!args[i]) {
    return {};
  }
  return this->getDoublelist(i);
}

inline std::vector<double> PythonArgs::doublelist(int i) {
  if (!args[i]) {
    return {};
  }
  return this->getDoublelist(i);
}

inline at::ScalarType PythonArgs::scalartypeWithDefault(
    int i,
    at::ScalarType default_scalartype) {
  if (!args[i])
    return default_scalartype;
  return scalartype(i);
}

inline at::ScalarType PythonArgs::scalartype(int i) {
  if (!args[i]) {
    auto scalartype = signature.params[i].default_scalartype;
    return (scalartype == at::ScalarType::Undefined)
        ? torch::tensors::get_default_scalar_type()
        : scalartype;
  }
  PyObject* obj = args[i];
  if (obj == (PyObject*)&PyFloat_Type) {
    return at::ScalarType::Double;
  }
  if (obj == (PyObject*)&PyBool_Type) {
    return at::ScalarType::Bool;
  }
  if (obj == (PyObject*)&PyLong_Type) {
    return at::ScalarType::Long;
  }
  return reinterpret_cast<THPDtype*>(obj)->scalar_type;
}

inline c10::optional<at::ScalarType> PythonArgs::scalartypeOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return scalartype(i);
}

inline at::Layout toLayout(PyObject* obj) {
  const auto layout = reinterpret_cast<THPLayout*>(obj);
  return layout->layout;
}

inline at::Layout PythonArgs::layout(int i) {
  if (!args[i])
    return signature.params[i].default_layout;
  return toLayout(args[i]);
}

inline at::Layout PythonArgs::layoutWithDefault(
    int i,
    at::Layout default_layout) {
  if (!args[i])
    return default_layout;
  return layout(i);
}

inline c10::optional<at::Layout> PythonArgs::layoutOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return layout(i);
}

inline at::Device toDevice(PyObject* obj) {
  if (THPDevice_Check(obj)) {
    const auto device = reinterpret_cast<THPDevice*>(obj);
    return device->device;
  }
  if (THPUtils_checkLong(obj)) {
    const auto device_index = THPUtils_unpackLong(obj);
    TORCH_CHECK(device_index >= 0, "Device index must not be negative");
    return at::Device(DeviceType::CUDA, device_index);
  }
  const std::string& device_str = THPUtils_unpackString(obj);
  return at::Device(device_str);
}

inline at::Device PythonArgs::device(int i) {
  if (!args[i]) {
    return torch::tensors::get_default_device();
  }
  return toDevice(args[i]);
}

inline at::Device PythonArgs::deviceWithDefault(
    int i,
    const at::Device& default_device) {
  if (!args[i])
    return default_device;
  return device(i);
}

inline c10::optional<at::Device> PythonArgs::deviceOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return device(i);
}

inline at::Dimname PythonArgs::dimname(int i) {
  TORCH_INTERNAL_ASSERT(args[i] != nullptr);
  return THPDimname_parse(args[i]);
}

inline std::vector<at::Dimname> parseDimnameList(PyObject* arg) {
  auto tuple = PyTuple_Check(arg);
  // NOLINTNEXTLINE(bugprone-branch-clone)
  auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<at::Dimname> res;
  res.reserve(size);
  for (const auto idx : c10::irange(size)) {
    PyObject* obj =
        tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
    res.push_back(THPDimname_parse(obj));
  }
  return res;
}

inline c10::optional<std::vector<at::Dimname>> PythonArgs::
    toDimnameListOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return parseDimnameList(args[i]);
}

inline std::vector<at::Dimname> PythonArgs::dimnamelist(int i) {
  TORCH_INTERNAL_ASSERT(args[i]);
  PyObject* arg = args[i];
  auto size = signature.params[i].size;
  TORCH_INTERNAL_ASSERT(size == 0 || size == 1);
  if (size == 1 && THPUtils_checkDimname(arg)) {
    return {THPDimname_parse(arg)};
  }
  return parseDimnameList(arg);
}

inline at::MemoryFormat PythonArgs::memoryformat(int i) {
  if (!args[i])
    return at::MemoryFormat::Contiguous;
  TORCH_CHECK(
      THPMemoryFormat_Check(args[i]),
      "memory_format arg must be an instance of the torch.memory_format");
  const auto memory_format = reinterpret_cast<THPMemoryFormat*>(args[i]);
  return memory_format->memory_format;
}

inline c10::optional<at::MemoryFormat> PythonArgs::memoryformatOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return memoryformat(i);
}

inline at::QScheme PythonArgs::toQScheme(int i) {
  if (!args[i])
    return at::kPerTensorAffine;
  TORCH_CHECK(
      THPQScheme_Check(args[i]),
      "qscheme arg must be an instance of the torch.qscheme");
  const auto qscheme = reinterpret_cast<THPQScheme*>(args[i]);
  return qscheme->qscheme;
}

inline std::string PythonArgs::string(int i) {
  return stringWithDefault(i, signature.params[i].default_string);
}

inline std::string PythonArgs::stringWithDefault(
    int i,
    const std::string& default_str) {
  if (!args[i])
    return default_str;
  return THPUtils_unpackString(args[i]);
}

inline c10::optional<std::string> PythonArgs::stringOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return THPUtils_unpackString(args[i]);
}

inline c10::string_view PythonArgs::stringView(int i) {
  return stringViewWithDefault(i, signature.params[i].default_string);
}

inline c10::string_view PythonArgs::stringViewWithDefault(
    int i,
    const c10::string_view default_str) {
  if (!args[i])
    return default_str;
  return THPUtils_unpackStringView(args[i]);
}

inline c10::optional<c10::string_view> PythonArgs::stringViewOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return THPUtils_unpackStringView(args[i]);
}

inline int64_t PythonArgs::toInt64(int i) {
  if (!args[i])
    return signature.params[i].default_int;
  if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
    auto& var = THPVariable_Unpack(args[i]);
    jit::tracer::ArgumentStash::stashValue(
        signature.params[i].name, idx, var, c10::IntType::get());
  }
  return THPUtils_unpackLong(args[i]);
}

inline c10::SymInt PythonArgs::toSymInt(int i) {
  if (!args[i]) {
    return c10::SymInt(signature.params[i].default_int);
  }
  if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
    auto& var = THPVariable_Unpack(args[i]);
    jit::tracer::ArgumentStash::stashValue(
        signature.params[i].name, idx, var, c10::IntType::get());
  }

  return py::cast<c10::SymInt>(py::handle(args[i]));
}

inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
  if (!args[i])
    return default_int;
  return toInt64(i);
}

inline c10::optional<int64_t> PythonArgs::toInt64Optional(int i) {
  if (!args[i])
    return c10::nullopt;
  return toInt64(i);
}

inline c10::optional<c10::SymInt> PythonArgs::toSymIntOptional(int i) {
  if (!args[i])
    return c10::nullopt;
  return toSymInt(i);
}

inline c10::optional<bool> PythonArgs::toBoolOptional(int i) {
  if (!args[i]) {
    return c10::nullopt;
  }
  return toBool(i);
}

inline c10::optional<double> PythonArgs::toDoubleOptional(int i) {
  if (!args[i]) {
    return c10::nullopt;
  }
  return toDouble(i);
}

inline double PythonArgs::toDouble(int i) {
  if (!args[i])
    return signature.params[i].default_double;
  return THPUtils_unpackDouble(args[i]);
}

inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
  if (!args[i])
    return default_double;
  return toDouble(i);
}

inline c10::complex<double> PythonArgs::toComplex(int i) {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  c10::complex<double> default_value = *const_cast<c10::complex<double>*>(
      reinterpret_cast<const c10::complex<double>*>(
          signature.params[i].default_complex));
  if (!args[i])
    return default_value;
  return THPUtils_unpackComplexDouble(args[i]);
}

inline c10::complex<double> PythonArgs::toComplexWithDefault(
    int i,
    c10::complex<double> default_value) {
  if (!args[i])
    return default_value;
  return toComplex(i);
}

inline bool PythonArgs::toBool(int i) {
  if (!args[i])
    return signature.params[i].default_bool;
  return args[i] == Py_True;
}

inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
  if (!args[i])
    return default_bool;
  return toBool(i);
}

inline bool PythonArgs::isNone(int i) {
  return args[i] == nullptr;
}

inline c10::optional<at::Generator> PythonArgs::generator(int i) {
  if (!args[i])
    return c10::nullopt;
  return reinterpret_cast<THPGenerator*>(args[i])->cdata;
}

inline at::Storage PythonArgs::storage(int i) {
  if (!args[i])
    return at::Storage();
  return createStorage(args[i]);
}

inline at::Storage PythonArgs::storage(
    int i,
    at::ScalarType& storage_scalar_type,
    bool& is_typed_storage) {
  at::Storage storage;
  if (!args[i]) {
    storage = at::Storage();
    is_typed_storage = false;
    storage_scalar_type = at::ScalarType::Undefined;
  } else {
    storage =
        createStorageGetType(args[i], storage_scalar_type, is_typed_storage);
  }
  return storage;
}

inline c10::Stream PythonArgs::stream(int i) {
  if (!args[i])
    return c10::Stream(
        c10::Stream::Default::DEFAULT, c10::Device(DeviceType::CPU, -1));
  if (!THPStream_Check(args[i])) {
    throw TypeError(
        "expected Stream object. Got '%s'", Py_TYPE(args[i])->tp_name);
  }
  return c10::Stream::unpack(((THPStream*)args[i])->cdata);
}

inline PyObject* PythonArgs::pyobject(int i) {
  if (!args[i])
    return Py_None;
  return args[i];
}

/*
 *
 * Handle __torch_function__ overrides if we know that there are overloaded
 * arguments.  All objects stored in r.overloaded_args must have a
 * __torch_function__ implementation and the arguments must be ordered in order
 * of precedence. Precedence goes from left to right in the order of the
 * signature of the function the overloaded arguments were passed to, except
 * subclasses are always considered before superclasses.
 *
 * If the result of calling __torch_function__ is NotImplemented, the
 * next implementation in the precedence order is called. If all
 * arguments return NotImplemented from their __torch_function__
 * implementation, a TypeError is raised in Python.
 *
 * Assumes overloaded_args has at least one entry. All entries must have
 * a __torch_function__ attribute that resolves to a callable that
 * accepts a torch API function, a tuple of arguments, and a dict of
 * keyword arguments for the torch API function.
 *
 * It is sufficient to call PythonArgs::has_torch_function before
 * calling this function to verify that there are valid arguments
 * present. If that is not done then special care must be taken to
 * ensure there are arguments that are overloaded with
 * __torch_function__.
 *
 * See torch._overrides.handle_torch_function for the equivalent
 * code in the pure-python implementation.
 *
 * 'r' is a parsed PythonArgs instance, returned from
 * PythonArgParser::parse.
 *
 * 'args' is a reference to the python tuple of arguments to the torch
 * API function.
 *
 * 'kwargs' is a reference to the python dict of keyword arguments to
 * the torch API function.
 *
 * 'torch_api' is a reference to a python torch API namespace.
 *
 * 'torch_api_function' is the reference to the original torch method, usually,
 * we can use torch_api and func_name to get torch_api_function. In some cases,
 * e.g., torch custom op, we create the function in C++, if we still use
 * torch_api and func_name to fetch original api, a cyclic call will happen.
 *
 * 'overloaded_args' is the args which have overloaded __torch_function__.
 *
 * 'func_name' is the named of the original torch method.
 *
 * TODO: we could use different names for the following 'handle_torch_function'
 * instead of overloading.
 *
 */
// Used for Tensor methods with arguments.
auto handle_torch_function(
    PythonArgs& r,
    PyObject* self,
    PyObject* args,
    PyObject* kwargs,
    PyObject* torch_api,
    const char* module_name,
    const char* func_name_override = nullptr) -> PyObject*;

// Used for functions which needs to parse python args.
auto handle_torch_function(
    PythonArgs& r,
    PyObject* args,
    PyObject* kwargs,
    PyObject* torch_api,
    const char* module_name,
    const char* func_name_override = nullptr) -> PyObject*;

// Used for functions that have no argument parsing.
auto handle_torch_function(
    PyObject* self,
    const std::string& func_name,
    PyObject* args = nullptr,
    PyObject* kwargs = nullptr,
    PyObject* torch_api = THPVariableClass,
    const std::string& module_name = "torch.Tensor") -> PyObject*;

// Used for functions created in C++, e.g., C++ custom op, which doesn't use
// PythonArgParser to get overloaded_args.
enum class TorchFunctionName { TorchFunction, TorchDispatch };

auto TORCH_API handle_torch_function_no_python_arg_parser(
    at::ArrayRef<py::handle> overloaded_args,
    PyObject* args,
    PyObject* kwargs,
    const char* func_name,
    PyObject* torch_api_function,
    const char* module_name,
    TorchFunctionName torch_function_name = TorchFunctionName::TorchFunction)
    -> PyObject*;

// Used for getters of Tensor properties
auto handle_torch_function_getter(
    THPVariable* self,
    const std::string& property_name) -> PyObject*;

// Used for setters of Tensor properties.
auto handle_torch_function_setter(
    THPVariable* self,
    const std::string& property_name,
    PyObject* value) -> int;

// Used for __getitem__ and __setitem__
auto handle_torch_function_indexing(
    PyObject* self,
    PyObject* index,
    PyObject* val = nullptr) -> PyObject*;

/*
 * Check if the input obj is Tensor type, including its subclass, or overloaded
 * type. If the type defines __torch_function__, it also returns true.
 * Otherwise returns flase. If the class is not torch.Tensor, and it defines
 * __torch_function__, we append obj to overloaded_args.
 *
 * 'obj': the input argument to be checked
 * 'overloaded_args': the vector to append the overloaded args.
 */
bool is_tensor_and_append_overloaded(
    PyObject* obj,
    std::vector<py::handle>* overloaded_args);

/*
 * Check if the input obj is Tensor List or Tensor Tuple type. First check
 * whether obj is Tuple or List type, if true, iterate over each element and
 * check whether it is Tensor type, including its subclass or overloaded type.
 * At the same time, the overloaded arg is appended to the overloaded_args.
 *
 * 'obj': the input argument to be checked
 * 'overloaded_args': the vector to append the overloaded args.
 * 'argnum': the number of total arguments of the function being checked.
 * 'throw_error': whether throw error if any element in the list or tuple is
 *                not tensor type or overloaded.
 */
bool is_tensor_list_and_append_overloaded(
    PyObject* obj,
    std::vector<py::handle>* overloaded_args,
    int argnum,
    bool throw_error);

/* Given an argument that is definitely a tensor and is definitely overloaded,
 * append it to the overloaded arguments list.  Use this instead of
 * is_tensor_and_append_overloaded in situations where you have a PyObject
 * and you know it definitely is a Tensor and it is definitely overloaded.
 *
 * 'overloaded_args': the vector to append the overloaded args
 * 'obj': the input tensor that is overloaded
 */
void append_overloaded_tensor(
    std::vector<py::handle>* overloaded_args,
    PyObject* obj);

/* Given an argument that is definitely a type and is definitely overloaded,
 * append it to the overloaded arguments list. Use this only with
 * __torch_dispatch__, where we operate on classes that have a
 * __torch_dispatch__ classmethod.
 *
 * 'overloaded_args': the vector to append the overloaded type
 * 'obj': the input class that has a __torch_dispatch__ classmethod.
 */
void append_overloaded_type(
    std::vector<py::handle>* overloaded_args,
    PyObject* obj);

} // namespace torch