1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
|
#pragma once
// Parse arguments to Python functions implemented in C++
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
// the types relevant to PyTorch and distinguishes between overloaded function
// signatures.
//
// Example:
//
// static PythonArgParser parser({
// "norm(Scalar p, int64_t dim, bool keepdim=False)",
// "norm(Scalar p=2)",
// });
// ParsedArgs<3> parsed_args;
// auto r = parser.parse(args, kwargs, parsed_args);
// if (r.idx == 0) {
// norm(r.scalar(0), r.int64(1), r.bool(0));
// } else {
// norm(r.scalar(0));
// }
//
// We auto-generate most uses of PythonArgParser; the generated files
// are torch/csrc/autograd/generated/python_*.cpp
//
// Some gotchas that you should watch out for:
//
// - Note [Order of overloads matters]
// Order of overloads matters. A set of input arguments may
// bind to multiple argument specs; we will always pick the
// first one in PythonArgParser. However, when you are writing
// overloads in, e.g., native_functions.yaml, you don't have to
// worry about what order you write them, because the code
// generation logic always gives the overloads a canonical
// order, where Tensor overloads come first, before Scalar overloads.
// This logic is in sort_declarations in
// tools/autograd/gen_python_functions.py
//
// - Zero-dim tensors (e.g., torch.tensor(2)) bind to both
// Scalar and Tensor, UNLESS they require grad (in which case
// they only bind to Tensor).
#include <pybind11/pytypes.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/python_dimname.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/six.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/core/Tensor.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymIntNodeImpl.h>
#include <array>
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
namespace torch {
inline bool is_symint_node(py::handle obj) {
auto static tp_symn = py::type::of<c10::SymIntNodeImpl>();
if (py::isinstance(obj, tp_symn)) {
TORCH_CHECK(
!jit::tracer::isTracing(), "JIT tracing of SymInts isn't supported!");
return true;
}
return false;
}
inline bool is_symfloat_node(py::handle obj) {
auto static tp_symn = py::type::of<c10::SymFloatNodeImpl>();
if (py::isinstance(obj, tp_symn)) {
TORCH_CHECK(
!jit::tracer::isTracing(), "JIT tracing of SymFloats isn't supported!");
return true;
}
return false;
}
} // namespace torch
namespace pybind11 {
namespace detail {
template <>
struct type_caster<c10::SymInt> {
public:
PYBIND11_TYPE_CASTER(c10::SymInt, _("SymInt"));
bool load(py::handle src, bool) {
if (torch::is_symint_node(src)) {
value = src.cast<c10::SymIntNodeImpl*>()->toSymInt();
return true;
}
auto raw_obj = src.ptr();
if (THPUtils_checkIndex(raw_obj)) {
value = c10::SymInt{THPUtils_unpackIndex(raw_obj)};
return true;
}
return false;
}
static py::handle cast(
c10::SymInt si,
return_value_policy /* policy */,
handle /* parent */) {
return si.is_symbolic() ? py::cast(si.toSymIntNodeImpl()).release()
: py::cast(si.expect_int()).release();
}
};
template <>
struct type_caster<c10::SymFloat> {
public:
PYBIND11_TYPE_CASTER(c10::SymFloat, _("SymFloat"));
bool load(py::handle src, bool) {
if (torch::is_symfloat_node(src)) {
value = src.cast<c10::SymFloatNodeImpl*>()->toSymFloat();
return true;
}
auto raw_obj = src.ptr();
if (THPUtils_checkDouble(raw_obj)) {
value = c10::SymFloat{THPUtils_unpackDouble(raw_obj)};
return true;
}
return false;
}
static py::handle cast(
c10::SymFloat si,
return_value_policy /* policy */,
handle /* parent */) {
return si.is_symbolic() ? py::cast(si.toSymFloatNodeImpl()).release()
: py::cast(si.expect_float()).release();
}
};
} // namespace detail
} // namespace pybind11
inline bool THPUtils_checkScalar(PyObject* obj) {
#ifdef USE_NUMPY
if (torch::utils::is_numpy_scalar(obj)) {
return true;
}
#endif
return PyFloat_Check(obj) || PyLong_Check(obj) || PyComplex_Check(obj) ||
torch::is_symint_node(py::handle(obj)) ||
torch::is_symfloat_node(py::handle(obj));
}
namespace torch {
bool should_allow_numbers_as_tensors(const std::string& name);
enum class ParameterType {
TENSOR,
SCALAR,
INT64,
SYM_INT,
DOUBLE,
COMPLEX,
TENSOR_LIST,
INT_LIST,
GENERATOR,
BOOL,
STORAGE,
PYOBJECT,
SCALARTYPE,
LAYOUT,
MEMORY_FORMAT,
DEVICE,
STREAM,
STRING,
DIMNAME,
DIMNAME_LIST,
QSCHEME,
FLOAT_LIST,
SCALAR_LIST,
SYM_INT_LIST
};
struct FunctionParameter;
struct FunctionSignature;
struct PythonArgs;
// Contains bound Python arguments in declaration order
template <int N>
struct ParsedArgs {
ParsedArgs() : args() {}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
PyObject* args[N];
};
struct PythonArgParser {
explicit PythonArgParser(
std::vector<std::string> fmts,
bool traceable = false);
// meant only for `torch` functions.
template <int N>
inline PythonArgs parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
ParsedArgs<N>& dst);
template <int N>
inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);
inline PythonArgs parse(PyObject* self, ParsedArgs<0>& dst);
// Formatted strings of non-hidden signatures
std::vector<std::string> get_signatures() const;
private:
[[noreturn]]
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
void
print_error(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]);
void check_deprecated(const FunctionSignature& signature);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
PythonArgs raw_parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]);
std::vector<FunctionSignature> signatures_;
std::string function_name;
size_t max_args;
bool traceable;
};
struct PYBIND11_EXPORT FunctionSignature {
explicit FunctionSignature(const std::string& fmt, int index);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
bool parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* dst[],
bool raise_exception);
std::string toString() const;
std::string name;
std::vector<FunctionParameter> params;
std::vector<py::handle> overloaded_args;
size_t min_args;
size_t max_args;
size_t max_pos_args;
int index;
bool hidden;
bool deprecated;
bool disable_torch_function;
};
struct PythonArgs {
PythonArgs(
bool traceable,
const FunctionSignature& signature,
PyObject** args)
: idx(signature.index),
traceable(traceable),
signature(signature),
args(args) {}
int idx;
bool traceable;
const FunctionSignature& signature;
PyObject** args;
inline bool has_torch_function();
inline std::string get_func_name();
inline at::Tensor tensor(int i);
inline c10::optional<at::Tensor> optionalTensor(int i);
inline at::Scalar scalar(int i);
inline at::Scalar scalarWithDefault(int i, const at::Scalar& default_scalar);
inline std::vector<at::Scalar> scalarlist(int i);
inline std::vector<at::Tensor> tensorlist(int i);
inline torch::List<c10::optional<at::Tensor>> list_of_optional_tensors(int i);
template <int N>
inline std::array<at::Tensor, N> tensorlist_n(int i);
inline std::vector<int64_t> intlist(int i);
inline std::vector<c10::SymInt> symintlist(int i);
inline c10::OptionalArray<int64_t> intlistOptional(int i);
inline c10::OptionalArray<c10::SymInt> symintlistOptional(int i);
inline std::vector<int64_t> intlistWithDefault(
int i,
std::vector<int64_t> default_intlist);
inline c10::optional<at::Generator> generator(int i);
inline at::Storage storage(int i);
inline at::Storage storage(
int i,
at::ScalarType& storage_scalar_type,
bool& is_typed_storage);
inline c10::Stream stream(int i);
inline at::ScalarType scalartype(int i);
inline at::ScalarType scalartypeWithDefault(
int i,
at::ScalarType default_scalartype);
inline c10::optional<at::ScalarType> scalartypeOptional(int i);
inline c10::optional<at::Scalar> scalarOptional(int i);
inline c10::optional<int64_t> toInt64Optional(int i);
inline c10::optional<c10::SymInt> toSymIntOptional(int i);
inline c10::optional<bool> toBoolOptional(int i);
inline c10::optional<double> toDoubleOptional(int i);
inline c10::OptionalArray<double> doublelistOptional(int i);
inline std::vector<double> doublelist(int i);
inline std::vector<double> getDoublelist(int i);
inline at::Layout layout(int i);
inline at::Layout layoutWithDefault(int i, at::Layout default_layout);
inline c10::optional<at::Layout> layoutOptional(int i);
inline at::Device device(int i);
inline at::Device deviceWithDefault(int i, const at::Device& default_device);
inline c10::optional<at::Device> deviceOptional(int i);
inline at::Dimname dimname(int i);
inline std::vector<at::Dimname> dimnamelist(int i);
inline c10::optional<std::vector<at::Dimname>> toDimnameListOptional(int i);
inline at::MemoryFormat memoryformat(int i);
inline c10::optional<at::MemoryFormat> memoryformatOptional(int i);
inline at::QScheme toQScheme(int i);
inline std::string string(int i);
inline std::string stringWithDefault(int i, const std::string& default_str);
inline c10::optional<std::string> stringOptional(int i);
inline c10::string_view stringView(int i);
inline c10::string_view stringViewWithDefault(
int i,
const c10::string_view default_str);
inline c10::optional<c10::string_view> stringViewOptional(int i);
inline PyObject* pyobject(int i);
inline int64_t toInt64(int i);
inline c10::SymInt toSymInt(int i);
inline int64_t toInt64WithDefault(int i, int64_t default_int);
inline double toDouble(int i);
inline double toDoubleWithDefault(int i, double default_double);
inline c10::complex<double> toComplex(int i);
inline c10::complex<double> toComplexWithDefault(
int i,
c10::complex<double> default_complex);
inline bool toBool(int i);
inline bool toBoolWithDefault(int i, bool default_bool);
inline bool isNone(int i);
private:
at::Tensor tensor_slow(int i);
at::Scalar scalar_slow(int i);
at::Scalar scalar_slow(PyObject* arg);
};
struct FunctionParameter {
FunctionParameter(const std::string& fmt, bool keyword_only);
bool check(
PyObject* obj,
std::vector<py::handle>& overloaded_args,
int argnum);
void set_default_str(const std::string& str);
std::string type_name() const;
ParameterType type_;
bool optional;
bool allow_none;
bool keyword_only;
bool allow_numbers_as_tensors = false;
int size;
std::string name;
// having this as a raw PyObject * will presumably leak it, but these are only
// held by static objects anyway, and Py_Finalize can already be called when
// this is destructed.
PyObject* python_name;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
at::SmallVector<PyObject*, 5> numpy_python_names;
at::Scalar default_scalar;
std::vector<int64_t> default_intlist;
std::string default_string;
union {
bool default_bool;
int64_t default_int;
double default_double;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
double default_complex[2]; // see Scalar
at::ScalarType default_scalartype;
at::Layout default_layout;
};
};
template <int N>
inline PythonArgs PythonArgParser::parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
ParsedArgs<N>& dst) {
if (N < max_args) {
throw ValueError(
"PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)",
(int)max_args,
N);
}
return raw_parse(self, args, kwargs, dst.args);
}
template <int N>
inline PythonArgs PythonArgParser::parse(
PyObject* args,
PyObject* kwargs,
ParsedArgs<N>& dst) {
return parse(nullptr, args, kwargs, dst);
}
inline PythonArgs PythonArgParser::parse(PyObject* self, ParsedArgs<0>& dst) {
return parse(self, nullptr, nullptr, dst);
}
inline bool PythonArgs::has_torch_function() {
return !this->signature.overloaded_args.empty() ||
at::impl::PythonTorchFunctionTLS::get_mode();
}
inline std::string PythonArgs::get_func_name() {
return signature.name;
}
// TODO: this can return MaybeOwned
inline at::Tensor PythonArgs::tensor(int i) {
if (args[i] && THPVariable_CheckExact(args[i])) {
return THPVariable_Unpack(args[i]);
}
return tensor_slow(i);
}
inline c10::optional<at::Tensor> PythonArgs::optionalTensor(int i) {
at::Tensor t = tensor(i);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (t.defined()) {
return t;
} else {
return c10::nullopt;
}
}
inline at::Scalar PythonArgs::scalar(int i) {
if (!args[i])
return signature.params[i].default_scalar;
return scalar_slow(i);
}
inline std::vector<at::Scalar> PythonArgs::scalarlist(int i) {
if (!args[i])
return std::vector<at::Scalar>();
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<at::Scalar> res(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
res[idx] = scalar_slow(obj);
}
return res;
}
inline at::Scalar PythonArgs::scalarWithDefault(
int i,
const at::Scalar& default_scalar) {
if (!args[i])
return default_scalar;
return scalar_slow(i);
}
inline c10::optional<at::Scalar> PythonArgs::scalarOptional(int i) {
if (!args[i])
return c10::nullopt;
return scalar_slow(i);
}
inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
if (!args[i])
return std::vector<at::Tensor>();
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<at::Tensor> res(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
// This is checked by the argument parser so it's safe to cast without
// checking if this is a tensor first
res[idx] = THPVariable_Unpack(obj);
}
return res;
}
inline torch::List<c10::optional<at::Tensor>> PythonArgs::
list_of_optional_tensors(int i) {
if (!args[i])
return torch::List<c10::optional<at::Tensor>>();
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
torch::List<c10::optional<at::Tensor>> res;
res.reserve(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
// This is checked by the argument parser so it's safe to cast without
// checking if this is a tensor first
res.push_back(THPVariable_Unpack(obj));
}
return res;
}
template <int N>
inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
auto res = std::array<at::Tensor, N>();
if (!args[i])
return res;
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
if (size != N) {
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
}
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
// This is checked by the argument parser so it's safe to cast without
// checking if this is a tensor first
res[idx] = THPVariable_Unpack(obj);
}
return res;
}
inline std::vector<int64_t> PythonArgs::intlist(int i) {
return intlistWithDefault(i, signature.params[i].default_intlist);
}
inline PyObject* toPyObject(c10::SymInt symint) {
if (symint.is_symbolic()) {
auto r = py::cast(symint.toSymIntNodeImpl()).release().ptr();
TORCH_INTERNAL_ASSERT(r);
return r;
} else {
return THPUtils_packInt64(symint.as_int_unchecked());
}
}
inline void throw_intlist_exception(
const torch::PythonArgs* args,
size_t i,
PyObject* obj,
size_t idx) {
throw TypeError(
"%s(): argument '%s' must be %s, but found element of type %s at pos %ld",
args->signature.name.c_str(),
args->signature.params[i].name.c_str(),
args->signature.params[i].type_name().c_str(),
Py_TYPE(obj)->tp_name,
idx + 1);
}
inline std::vector<c10::SymInt> PythonArgs::symintlist(int i) {
if (!args[i]) {
return c10::fmap(signature.params[i].default_intlist, [](int64_t di) {
return c10::SymInt(di);
});
}
const auto size1 = signature.params[i].size;
if (size1 > 0 && THPUtils_checkLong(args[i])) {
return std::vector<c10::SymInt>(
size1, c10::SymInt(THPUtils_unpackIndex(args[i])));
}
if (size1 > 0 && torch::is_symint_node(py::handle(args[i]))) {
auto si = py::handle(args[i]).cast<c10::SymIntNodeImpl*>()->toSymInt();
return std::vector<c10::SymInt>(size1, si);
}
PyObject* arg = args[i];
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size2 = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
std::vector<c10::SymInt> res;
res.reserve(size2);
for (const auto idx : c10::irange(size2)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
// Elements of torch.Size are tensors during tracing, and we need to
// record extra information before they are turned into an IntArrayRef
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
jit::tracer::ArgumentStash::stashIntArrayRefElem(
signature.params[i].name, size2, idx, var);
try {
res.push_back(var.item<int64_t>());
continue;
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
continue;
} else {
// convert tensor to scalar outside of try / catch,
// so that Tensor subclass exceptions will not be caught.
if (THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
if (var.numel() != 1 ||
!at::isIntegralType(
var.dtype().toScalarType(), /*include_bool*/ true)) {
throw_intlist_exception(this, i, obj, idx);
}
// TODO: ideally, if this was a fake tensor this would
// result in a SymInt, but we don't have the API to do this
res.push_back(var.item<int64_t>());
} else {
try {
if (is_symint_node(py::handle(obj))) {
res.push_back(
py::handle(obj).cast<c10::SymIntNodeImpl*>()->toSymInt());
} else {
res.push_back(c10::SymInt(THPUtils_unpackIndex(obj)));
}
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
}
}
}
return res;
}
inline std::vector<int64_t> PythonArgs::intlistWithDefault(
int i,
std::vector<int64_t> default_intlist) {
if (!args[i])
return default_intlist;
PyObject* arg = args[i];
const auto size1 = signature.params[i].size;
if (size1 > 0 && THPUtils_checkLong(arg)) {
return std::vector<int64_t>(size1, THPUtils_unpackIndex(arg));
}
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size2 = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<int64_t> res(size2);
for (const auto idx : c10::irange(size2)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
// Elements of torch.Size are tensors during tracing, and we need to
// record extra information before they are turned into an IntArrayRef
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
jit::tracer::ArgumentStash::stashIntArrayRefElem(
signature.params[i].name, size2, idx, var);
try {
res[idx] = var.item<int64_t>();
continue;
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
} else {
// convert tensor to scalar outside of try / catch,
// so that Tensor subclass exceptions will not be caught.
if (THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
if (var.numel() != 1 ||
!at::isIntegralType(
var.dtype().toScalarType(), /*include_bool*/ true)) {
throw_intlist_exception(this, i, obj, idx);
}
res[idx] = var.item<int64_t>();
} else {
try {
res[idx] = THPUtils_unpackIndex(obj);
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
}
}
}
return res;
}
inline c10::OptionalArray<int64_t> PythonArgs::intlistOptional(int i) {
if (!args[i]) {
return {};
}
return intlist(i);
}
inline c10::OptionalArray<c10::SymInt> PythonArgs::symintlistOptional(int i) {
if (!args[i]) {
return {};
}
return symintlist(i);
}
inline std::vector<double> PythonArgs::getDoublelist(int i) {
PyObject* arg = args[i];
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<double> res(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
try {
res[idx] = THPUtils_unpackDouble(obj);
} catch (const std::exception& e) {
throw TypeError(
"%s(): argument '%s' must be %s, but found element of type %s at pos %ld",
signature.name.c_str(),
signature.params[i].name.c_str(),
signature.params[i].type_name().c_str(),
Py_TYPE(obj)->tp_name,
idx + 1);
}
}
return res;
}
inline c10::OptionalArray<double> PythonArgs::doublelistOptional(int i) {
if (!args[i]) {
return {};
}
return this->getDoublelist(i);
}
inline std::vector<double> PythonArgs::doublelist(int i) {
if (!args[i]) {
return {};
}
return this->getDoublelist(i);
}
inline at::ScalarType PythonArgs::scalartypeWithDefault(
int i,
at::ScalarType default_scalartype) {
if (!args[i])
return default_scalartype;
return scalartype(i);
}
inline at::ScalarType PythonArgs::scalartype(int i) {
if (!args[i]) {
auto scalartype = signature.params[i].default_scalartype;
return (scalartype == at::ScalarType::Undefined)
? torch::tensors::get_default_scalar_type()
: scalartype;
}
PyObject* obj = args[i];
if (obj == (PyObject*)&PyFloat_Type) {
return at::ScalarType::Double;
}
if (obj == (PyObject*)&PyBool_Type) {
return at::ScalarType::Bool;
}
if (obj == (PyObject*)&PyLong_Type) {
return at::ScalarType::Long;
}
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
}
inline c10::optional<at::ScalarType> PythonArgs::scalartypeOptional(int i) {
if (!args[i])
return c10::nullopt;
return scalartype(i);
}
inline at::Layout toLayout(PyObject* obj) {
const auto layout = reinterpret_cast<THPLayout*>(obj);
return layout->layout;
}
inline at::Layout PythonArgs::layout(int i) {
if (!args[i])
return signature.params[i].default_layout;
return toLayout(args[i]);
}
inline at::Layout PythonArgs::layoutWithDefault(
int i,
at::Layout default_layout) {
if (!args[i])
return default_layout;
return layout(i);
}
inline c10::optional<at::Layout> PythonArgs::layoutOptional(int i) {
if (!args[i])
return c10::nullopt;
return layout(i);
}
inline at::Device toDevice(PyObject* obj) {
if (THPDevice_Check(obj)) {
const auto device = reinterpret_cast<THPDevice*>(obj);
return device->device;
}
if (THPUtils_checkLong(obj)) {
const auto device_index = THPUtils_unpackLong(obj);
TORCH_CHECK(device_index >= 0, "Device index must not be negative");
return at::Device(DeviceType::CUDA, device_index);
}
const std::string& device_str = THPUtils_unpackString(obj);
return at::Device(device_str);
}
inline at::Device PythonArgs::device(int i) {
if (!args[i]) {
return torch::tensors::get_default_device();
}
return toDevice(args[i]);
}
inline at::Device PythonArgs::deviceWithDefault(
int i,
const at::Device& default_device) {
if (!args[i])
return default_device;
return device(i);
}
inline c10::optional<at::Device> PythonArgs::deviceOptional(int i) {
if (!args[i])
return c10::nullopt;
return device(i);
}
inline at::Dimname PythonArgs::dimname(int i) {
TORCH_INTERNAL_ASSERT(args[i] != nullptr);
return THPDimname_parse(args[i]);
}
inline std::vector<at::Dimname> parseDimnameList(PyObject* arg) {
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<at::Dimname> res;
res.reserve(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
res.push_back(THPDimname_parse(obj));
}
return res;
}
inline c10::optional<std::vector<at::Dimname>> PythonArgs::
toDimnameListOptional(int i) {
if (!args[i])
return c10::nullopt;
return parseDimnameList(args[i]);
}
inline std::vector<at::Dimname> PythonArgs::dimnamelist(int i) {
TORCH_INTERNAL_ASSERT(args[i]);
PyObject* arg = args[i];
auto size = signature.params[i].size;
TORCH_INTERNAL_ASSERT(size == 0 || size == 1);
if (size == 1 && THPUtils_checkDimname(arg)) {
return {THPDimname_parse(arg)};
}
return parseDimnameList(arg);
}
inline at::MemoryFormat PythonArgs::memoryformat(int i) {
if (!args[i])
return at::MemoryFormat::Contiguous;
TORCH_CHECK(
THPMemoryFormat_Check(args[i]),
"memory_format arg must be an instance of the torch.memory_format");
const auto memory_format = reinterpret_cast<THPMemoryFormat*>(args[i]);
return memory_format->memory_format;
}
inline c10::optional<at::MemoryFormat> PythonArgs::memoryformatOptional(int i) {
if (!args[i])
return c10::nullopt;
return memoryformat(i);
}
inline at::QScheme PythonArgs::toQScheme(int i) {
if (!args[i])
return at::kPerTensorAffine;
TORCH_CHECK(
THPQScheme_Check(args[i]),
"qscheme arg must be an instance of the torch.qscheme");
const auto qscheme = reinterpret_cast<THPQScheme*>(args[i]);
return qscheme->qscheme;
}
inline std::string PythonArgs::string(int i) {
return stringWithDefault(i, signature.params[i].default_string);
}
inline std::string PythonArgs::stringWithDefault(
int i,
const std::string& default_str) {
if (!args[i])
return default_str;
return THPUtils_unpackString(args[i]);
}
inline c10::optional<std::string> PythonArgs::stringOptional(int i) {
if (!args[i])
return c10::nullopt;
return THPUtils_unpackString(args[i]);
}
inline c10::string_view PythonArgs::stringView(int i) {
return stringViewWithDefault(i, signature.params[i].default_string);
}
inline c10::string_view PythonArgs::stringViewWithDefault(
int i,
const c10::string_view default_str) {
if (!args[i])
return default_str;
return THPUtils_unpackStringView(args[i]);
}
inline c10::optional<c10::string_view> PythonArgs::stringViewOptional(int i) {
if (!args[i])
return c10::nullopt;
return THPUtils_unpackStringView(args[i]);
}
inline int64_t PythonArgs::toInt64(int i) {
if (!args[i])
return signature.params[i].default_int;
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, c10::IntType::get());
}
return THPUtils_unpackLong(args[i]);
}
inline c10::SymInt PythonArgs::toSymInt(int i) {
if (!args[i]) {
return c10::SymInt(signature.params[i].default_int);
}
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, c10::IntType::get());
}
return py::cast<c10::SymInt>(py::handle(args[i]));
}
inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
if (!args[i])
return default_int;
return toInt64(i);
}
inline c10::optional<int64_t> PythonArgs::toInt64Optional(int i) {
if (!args[i])
return c10::nullopt;
return toInt64(i);
}
inline c10::optional<c10::SymInt> PythonArgs::toSymIntOptional(int i) {
if (!args[i])
return c10::nullopt;
return toSymInt(i);
}
inline c10::optional<bool> PythonArgs::toBoolOptional(int i) {
if (!args[i]) {
return c10::nullopt;
}
return toBool(i);
}
inline c10::optional<double> PythonArgs::toDoubleOptional(int i) {
if (!args[i]) {
return c10::nullopt;
}
return toDouble(i);
}
inline double PythonArgs::toDouble(int i) {
if (!args[i])
return signature.params[i].default_double;
return THPUtils_unpackDouble(args[i]);
}
inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
if (!args[i])
return default_double;
return toDouble(i);
}
inline c10::complex<double> PythonArgs::toComplex(int i) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
c10::complex<double> default_value = *const_cast<c10::complex<double>*>(
reinterpret_cast<const c10::complex<double>*>(
signature.params[i].default_complex));
if (!args[i])
return default_value;
return THPUtils_unpackComplexDouble(args[i]);
}
inline c10::complex<double> PythonArgs::toComplexWithDefault(
int i,
c10::complex<double> default_value) {
if (!args[i])
return default_value;
return toComplex(i);
}
inline bool PythonArgs::toBool(int i) {
if (!args[i])
return signature.params[i].default_bool;
return args[i] == Py_True;
}
inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
if (!args[i])
return default_bool;
return toBool(i);
}
inline bool PythonArgs::isNone(int i) {
return args[i] == nullptr;
}
inline c10::optional<at::Generator> PythonArgs::generator(int i) {
if (!args[i])
return c10::nullopt;
return reinterpret_cast<THPGenerator*>(args[i])->cdata;
}
inline at::Storage PythonArgs::storage(int i) {
if (!args[i])
return at::Storage();
return createStorage(args[i]);
}
inline at::Storage PythonArgs::storage(
int i,
at::ScalarType& storage_scalar_type,
bool& is_typed_storage) {
at::Storage storage;
if (!args[i]) {
storage = at::Storage();
is_typed_storage = false;
storage_scalar_type = at::ScalarType::Undefined;
} else {
storage =
createStorageGetType(args[i], storage_scalar_type, is_typed_storage);
}
return storage;
}
inline c10::Stream PythonArgs::stream(int i) {
if (!args[i])
return c10::Stream(
c10::Stream::Default::DEFAULT, c10::Device(DeviceType::CPU, -1));
if (!THPStream_Check(args[i])) {
throw TypeError(
"expected Stream object. Got '%s'", Py_TYPE(args[i])->tp_name);
}
return c10::Stream::unpack(((THPStream*)args[i])->cdata);
}
inline PyObject* PythonArgs::pyobject(int i) {
if (!args[i])
return Py_None;
return args[i];
}
/*
*
* Handle __torch_function__ overrides if we know that there are overloaded
* arguments. All objects stored in r.overloaded_args must have a
* __torch_function__ implementation and the arguments must be ordered in order
* of precedence. Precedence goes from left to right in the order of the
* signature of the function the overloaded arguments were passed to, except
* subclasses are always considered before superclasses.
*
* If the result of calling __torch_function__ is NotImplemented, the
* next implementation in the precedence order is called. If all
* arguments return NotImplemented from their __torch_function__
* implementation, a TypeError is raised in Python.
*
* Assumes overloaded_args has at least one entry. All entries must have
* a __torch_function__ attribute that resolves to a callable that
* accepts a torch API function, a tuple of arguments, and a dict of
* keyword arguments for the torch API function.
*
* It is sufficient to call PythonArgs::has_torch_function before
* calling this function to verify that there are valid arguments
* present. If that is not done then special care must be taken to
* ensure there are arguments that are overloaded with
* __torch_function__.
*
* See torch._overrides.handle_torch_function for the equivalent
* code in the pure-python implementation.
*
* 'r' is a parsed PythonArgs instance, returned from
* PythonArgParser::parse.
*
* 'args' is a reference to the python tuple of arguments to the torch
* API function.
*
* 'kwargs' is a reference to the python dict of keyword arguments to
* the torch API function.
*
* 'torch_api' is a reference to a python torch API namespace.
*
* 'torch_api_function' is the reference to the original torch method, usually,
* we can use torch_api and func_name to get torch_api_function. In some cases,
* e.g., torch custom op, we create the function in C++, if we still use
* torch_api and func_name to fetch original api, a cyclic call will happen.
*
* 'overloaded_args' is the args which have overloaded __torch_function__.
*
* 'func_name' is the named of the original torch method.
*
* TODO: we could use different names for the following 'handle_torch_function'
* instead of overloading.
*
*/
// Used for Tensor methods with arguments.
auto handle_torch_function(
PythonArgs& r,
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override = nullptr) -> PyObject*;
// Used for functions which needs to parse python args.
auto handle_torch_function(
PythonArgs& r,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override = nullptr) -> PyObject*;
// Used for functions that have no argument parsing.
auto handle_torch_function(
PyObject* self,
const std::string& func_name,
PyObject* args = nullptr,
PyObject* kwargs = nullptr,
PyObject* torch_api = THPVariableClass,
const std::string& module_name = "torch.Tensor") -> PyObject*;
// Used for functions created in C++, e.g., C++ custom op, which doesn't use
// PythonArgParser to get overloaded_args.
enum class TorchFunctionName { TorchFunction, TorchDispatch };
auto TORCH_API handle_torch_function_no_python_arg_parser(
at::ArrayRef<py::handle> overloaded_args,
PyObject* args,
PyObject* kwargs,
const char* func_name,
PyObject* torch_api_function,
const char* module_name,
TorchFunctionName torch_function_name = TorchFunctionName::TorchFunction)
-> PyObject*;
// Used for getters of Tensor properties
auto handle_torch_function_getter(
THPVariable* self,
const std::string& property_name) -> PyObject*;
// Used for setters of Tensor properties.
auto handle_torch_function_setter(
THPVariable* self,
const std::string& property_name,
PyObject* value) -> int;
// Used for __getitem__ and __setitem__
auto handle_torch_function_indexing(
PyObject* self,
PyObject* index,
PyObject* val = nullptr) -> PyObject*;
/*
* Check if the input obj is Tensor type, including its subclass, or overloaded
* type. If the type defines __torch_function__, it also returns true.
* Otherwise returns flase. If the class is not torch.Tensor, and it defines
* __torch_function__, we append obj to overloaded_args.
*
* 'obj': the input argument to be checked
* 'overloaded_args': the vector to append the overloaded args.
*/
bool is_tensor_and_append_overloaded(
PyObject* obj,
std::vector<py::handle>* overloaded_args);
/*
* Check if the input obj is Tensor List or Tensor Tuple type. First check
* whether obj is Tuple or List type, if true, iterate over each element and
* check whether it is Tensor type, including its subclass or overloaded type.
* At the same time, the overloaded arg is appended to the overloaded_args.
*
* 'obj': the input argument to be checked
* 'overloaded_args': the vector to append the overloaded args.
* 'argnum': the number of total arguments of the function being checked.
* 'throw_error': whether throw error if any element in the list or tuple is
* not tensor type or overloaded.
*/
bool is_tensor_list_and_append_overloaded(
PyObject* obj,
std::vector<py::handle>* overloaded_args,
int argnum,
bool throw_error);
/* Given an argument that is definitely a tensor and is definitely overloaded,
* append it to the overloaded arguments list. Use this instead of
* is_tensor_and_append_overloaded in situations where you have a PyObject
* and you know it definitely is a Tensor and it is definitely overloaded.
*
* 'overloaded_args': the vector to append the overloaded args
* 'obj': the input tensor that is overloaded
*/
void append_overloaded_tensor(
std::vector<py::handle>* overloaded_args,
PyObject* obj);
/* Given an argument that is definitely a type and is definitely overloaded,
* append it to the overloaded arguments list. Use this only with
* __torch_dispatch__, where we operate on classes that have a
* __torch_dispatch__ classmethod.
*
* 'overloaded_args': the vector to append the overloaded type
* 'obj': the input class that has a __torch_dispatch__ classmethod.
*/
void append_overloaded_type(
std::vector<py::handle>* overloaded_args,
PyObject* obj);
} // namespace torch
|