1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
#include <torch/csrc/jit/frontend/function_schema_parser.h>
#include <torch/csrc/utils/python_dispatch.h>
#include <ATen/ATen.h>
#include <ATen/FuncTorchTLS.h>
#include <ATen/TensorSubclassLikeUtils.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <torch/library.h>
#include <c10/core/SafePyObject.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <pybind11/operators.h>
#include <pybind11/stl.h>
#include <torch/csrc/utils/pybind.h>
#include <iostream>
namespace py = pybind11;
namespace torch {
namespace impl {
namespace dispatch {
torch::Library::Kind parseKind(const std::string& k) {
static std::unordered_map<std::string, torch::Library::Kind> kind_map = {
{"DEF", torch::Library::DEF},
{"IMPL", torch::Library::IMPL},
{"FRAGMENT", torch::Library::FRAGMENT},
};
auto it = kind_map.find(k);
TORCH_CHECK(it != kind_map.end(), "could not parse ", k);
return it->second;
}
c10::AliasAnalysisKind parseAliasAnalysisKind(const std::string& k) {
static std::unordered_map<std::string, c10::AliasAnalysisKind> key_map = {
{"CONSERVATIVE", c10::AliasAnalysisKind::CONSERVATIVE},
{"FROM_SCHEMA", c10::AliasAnalysisKind::FROM_SCHEMA},
{"PURE_FUNCTION", c10::AliasAnalysisKind::PURE_FUNCTION},
{"", c10::AliasAnalysisKind::FROM_SCHEMA}, // default
};
auto it = key_map.find(k);
TORCH_CHECK(it != key_map.end(), "could not parse ", k);
return it->second;
}
template <typename Func>
inline torch::CppFunction dispatch_str(const char* key, Func&& raw_f) {
auto mb_key = std::string(key) == ""
? c10::nullopt
: c10::make_optional(c10::parseDispatchKey(key));
if (mb_key) {
return torch::dispatch(*mb_key, std::forward<Func>(raw_f));
} else {
torch::CppFunction f(std::forward<Func>(raw_f));
return f;
}
}
class PythonKernelHolder : public c10::OperatorKernel {
c10::SafePyObject func_;
public:
PythonKernelHolder(py::object func)
: func_(func.release().ptr(), getPyInterpreter()) {}
void operator()(
const c10::OperatorHandle& op,
c10::DispatchKeySet keyset,
torch::jit::Stack* stack) {
auto arguments = torch::jit::pop(*stack, op.schema().arguments().size());
py::gil_scoped_acquire g;
auto args_kwargs = parseIValuesToPyArgsKwargs(op, arguments);
auto obj = py::reinterpret_steal<py::object>(PyObject_Call(
func_.ptr(getPyInterpreter()),
args_kwargs.first.ptr(),
args_kwargs.second.ptr()));
if (!obj) {
throw python_error();
}
pushPyOutToStack(op, stack, obj, "PythonKernelHolder");
}
};
void initDispatchBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::class_<c10::OperatorHandle>(m, "_DispatchOperatorHandle")
.def("schema", &c10::OperatorHandle::schema);
// TODO: figure out how to do chaining
py::class_<torch::Library>(m, "_DispatchModule")
.def(
"def_",
[](py::object self, const char* schema, const char* alias) {
self.cast<torch::Library&>().def(
torch::schema(schema, parseAliasAnalysisKind(alias)));
return self;
},
"",
py::arg("schema"),
py::arg("alias") = "")
// Simulated "legacy" def where alias analysis kind is not set.
// Ordinarily this can only be exercised from RegisterOperators() API
// but I am not going to bind that here
.def(
"def_legacy",
[](py::object self, const char* schema) {
self.cast<torch::Library&>().def(torch::jit::parseSchema(schema));
return self;
},
"",
py::arg("schema"))
// We can't conveniently turn Python functions into valid functions
// in the dispatcher. So instead we provide a bunch of precanned
// functions for testing purposes. You're NOT intended to actually
// call these functions; they're just here so we can actually register
// something
//
// Mangling scheme: args_rets. One character per.
// t = Tensor
.def(
"def_name_t_t",
[](py::object self,
const char* name,
const char* dispatch,
const char* debug) {
self.cast<torch::Library&>().def(
name, dispatch_str(dispatch, [](const at::Tensor& a) {
return a;
}).debug(debug));
return self;
},
"",
py::arg("name"),
py::arg("dispatch") = "",
py::arg("debug") = "default_def_name_t_t")
.def(
"def_schema_t_t",
[](py::object self,
const char* schema,
const char* dispatch,
const char* alias,
const char* debug) {
self.cast<torch::Library&>().def(
torch::schema(schema, parseAliasAnalysisKind(alias)),
dispatch_str(dispatch, [](const at::Tensor& a) {
return a;
}).debug(debug));
return self;
},
"",
py::arg("name"),
py::arg("dispatch") = "",
py::arg("alias") = "",
py::arg("debug") = "default_def_schema_t_t")
// TODO: maybe consider deduplicating the definitions here, it's getting
// pretty long
.def(
"impl_t_t",
[](py::object self,
const char* name,
const char* dispatch,
const char* debug) {
self.cast<torch::Library&>().impl(
name, dispatch_str(dispatch, [](const at::Tensor& a) {
return a;
}).debug(debug));
return self;
},
"",
py::arg("name"),
py::arg("dispatch") = "",
py::arg("debug") = "impl_t_t")
.def(
"impl_tt_t",
[](py::object self,
const char* name,
const char* dispatch,
const char* debug) {
self.cast<torch::Library&>().impl(
name,
dispatch_str(
dispatch,
[](const at::Tensor& a, const at::Tensor& b) { return a; })
.debug(debug));
return self;
},
"",
py::arg("name"),
py::arg("dispatch") = "",
py::arg("debug") = "")
.def(
"impl",
[](py::object self,
const char* name,
const char* dispatch,
py::object func) {
HANDLE_TH_ERRORS
self.cast<torch::Library&>().impl(
name,
dispatch_str(
dispatch,
CppFunction::makeFromBoxedFunctor(
std::make_unique<PythonKernelHolder>(
std::move(func)))));
END_HANDLE_TH_ERRORS_PYBIND
},
"",
py::arg("name"),
py::arg("dispatch"),
py::arg("func"))
.def(
"define",
[](py::object self, const char* schema, const char* alias_analysis) {
self.cast<torch::Library&>().def(
torch::schema(schema, parseAliasAnalysisKind(alias_analysis)));
return torch::schema(schema, parseAliasAnalysisKind(alias_analysis))
.name();
},
"",
py::arg("schema"),
py::arg("alias_analysis") = "")
.def(
"fallback_fallthrough",
[](py::object self, const char* dispatch) {
self.cast<torch::Library&>().fallback(
dispatch_str(dispatch, CppFunction::makeFallthrough()));
return self;
},
"",
py::arg("dispatch") = "");
m.def(
"_dispatch_library",
[](const char* kind,
std::string name,
const char* dispatch,
const char* file,
uint32_t linenum) {
HANDLE_TH_ERRORS
return std::make_unique<torch::Library>(
parseKind(kind),
std::move(name),
std::string(dispatch) == ""
? c10::nullopt
: c10::make_optional(c10::parseDispatchKey(dispatch)),
"/dev/null", // temporary workaround
linenum);
END_HANDLE_TH_ERRORS_PYBIND
},
"",
py::arg("kind"),
py::arg("name"),
py::arg("dispatch"),
py::arg("file") = "/dev/null",
py::arg("linenum") = 0);
m.def("_dispatch_dump", [](const char* name) -> std::string {
auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name));
if (!op) {
return "";
} else {
return op->dumpState();
}
});
m.def("_dispatch_dump_table", [](const char* name) -> std::string {
auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name));
if (!op) {
return "";
} else {
return op->dumpComputedTable();
}
});
m.def("_dispatch_check_invariants", [](const char* name) {
auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name));
if (!op) {
} else {
return op->checkInvariants();
}
});
m.def("_dispatch_check_all_invariants", []() {
c10::Dispatcher::singleton().checkInvariants();
});
m.def("_dispatch_has_kernel", [](const char* name) -> bool {
auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name));
return static_cast<bool>(op);
});
m.def(
// Returns whether or not a direct kernel registration exists
// for this <op_name, dispatch_key> pair.
"_dispatch_has_kernel_for_dispatch_key",
[](const char* name, c10::DispatchKey dispatch) -> bool {
auto op =
c10::Dispatcher::singleton().findOp(torch::jit::parseName(name));
TORCH_CHECK(op, "operator ", name, " does not exist");
return op->hasKernelForDispatchKey(dispatch);
});
m.def(
"_dispatch_has_kernel_for_any_dispatch_key",
[](const char* name, c10::DispatchKeySet ks) -> bool {
auto op =
c10::Dispatcher::singleton().findOp(torch::jit::parseName(name));
TORCH_CHECK(op, "operator ", name, " does not exist");
return op->hasKernelForAnyDispatchKey(ks);
});
m.def(
// Returns whether or not there is an entry in the runtime computed
// dispatch table, for this <op_name, dispatch_key> pair. For example, if
// "op" has a `CompositeImplicitAutograd` kernel, Then
// _dispatch_has_computed_kernel_for_dispatch_key(op, backend) will return
// true for all backends that are part of the alias set for
// CompositeImplicitAutograd.
"_dispatch_has_computed_kernel_for_dispatch_key",
[](const char* name, const char* dispatch) -> bool {
auto op =
c10::Dispatcher::singleton().findOp(torch::jit::parseName(name));
TORCH_CHECK(op, "operator ", name, " does not exist");
return op->hasComputedKernelForDispatchKey(
c10::parseDispatchKey(dispatch));
});
m.def("_dispatch_find_dangling_impls", []() -> std::vector<std::string> {
auto danglingImpls = c10::Dispatcher::singleton().findDanglingImpls();
std::vector<std::string> states;
states.reserve(danglingImpls.size());
for (auto& danglingImpl : danglingImpls) {
states.push_back(danglingImpl.dumpState());
}
return states;
});
m.def(
"_dispatch_tls_set_dispatch_key_excluded",
[](c10::DispatchKey dispatch_key, bool desired_state) {
c10::impl::tls_set_dispatch_key_excluded(dispatch_key, desired_state);
});
m.def(
"_dispatch_tls_is_dispatch_key_excluded",
[](c10::DispatchKey dispatch_key) {
return c10::impl::tls_is_dispatch_key_excluded(dispatch_key);
});
m.def("_dispatch_isTensorSubclassLike", [](const at::Tensor& tensor) {
return at::isTensorSubclassLike(tensor);
});
m.def("_dispatch_key_name", [](c10::DispatchKey k) {
return c10::toString(k);
});
m.def("_dispatch_key_parse", [](c10::DispatchKey k) { return k; });
m.def("_dispatch_num_backends", []() { return c10::num_backends; });
#define DEF_ONE(n) .value(#n, c10::DispatchKey::n)
py::enum_<c10::DispatchKey>(m, "DispatchKey") DEF_ONE(Undefined)
DEF_ONE(CompositeExplicitAutogradNonFunctional)
DEF_ONE(CompositeExplicitAutograd)
DEF_ONE(CompositeImplicitAutogradNestedTensor)
DEF_ONE(CompositeImplicitAutograd) DEF_ONE(AutogradOther)
DEF_ONE(Autograd) DEF_ONE(BackendSelect)
DEF_ONE(ADInplaceOrView) DEF_ONE(PythonTLSSnapshot)
DEF_ONE(Python)
#define DEF_SINGLE(n, prefix) .value(#prefix #n, c10::DispatchKey::prefix##n)
#define DEF_MULTIPLE(fullname, prefix) \
DEF_SINGLE(, fullname) \
DEF_SINGLE(, StartOf##fullname##Backends) \
C10_FORALL_BACKEND_COMPONENTS(DEF_SINGLE, prefix) \
DEF_SINGLE(, EndOf##fullname##Backends)
C10_FORALL_FUNCTIONALITY_KEYS(DEF_MULTIPLE)
#undef DEF_MULTIPLE
#undef DEF_SINGLE
;
py::class_<c10::DispatchKeySet>(m, "DispatchKeySet")
.def(py::init<c10::DispatchKey>())
.def("__or__", &c10::DispatchKeySet::operator|)
.def("__sub__", &c10::DispatchKeySet::operator-)
.def("__and__", &c10::DispatchKeySet::operator&)
.def("highestPriorityTypeId", &c10::DispatchKeySet::highestPriorityTypeId)
.def("has", &c10::DispatchKeySet::has)
.def("__repr__", [](c10::DispatchKeySet d) { return c10::toString(d); });
m.attr("_dispatch_autogradother_backends") =
py::cast(c10::autogradother_backends);
m.def("_dispatch_has_backend_fallback", [](c10::DispatchKey t) {
return c10::Dispatcher::singleton().hasBackendFallbackForDispatchKey(t);
});
m.def("_dispatch_keyset_full_after", [](c10::DispatchKey t) {
return c10::DispatchKeySet(c10::DispatchKeySet::FULL_AFTER, t);
});
m.def("_dispatch_keyset_to_string", [](c10::DispatchKeySet keyset) {
return c10::toString(keyset);
});
m.def("_dispatch_get_backend_keyset_from_autograd", [](c10::DispatchKey k) {
return c10::getBackendKeySetFromAutograd(k);
});
m.def("_dispatch_keys", [](const at::Tensor& tensor) {
auto* impl = tensor.unsafeGetTensorImpl();
return impl->key_set();
});
m.def("_dispatch_tls_local_include_set", []() {
return c10::impl::tls_local_dispatch_key_set().included_;
});
m.def("_dispatch_tls_local_exclude_set", []() {
return c10::impl::tls_local_dispatch_key_set().excluded_;
});
m.def(
"_dispatch_is_included_in_alias",
[](c10::DispatchKey a, c10::DispatchKey b) {
return c10::isIncludedInAlias(a, b);
});
py::class_<c10::impl::ExcludeDispatchKeyGuard>(m, "ExcludeDispatchKeyGuard")
.def(py::init<c10::DispatchKeySet>());
py::class_<at::AutoDispatchBelowAutograd>(m, "_AutoDispatchBelowAutograd")
.def(py::init<>());
// Prints out the name of every operator that has a kernel registered to the
// Dispatcher under [dispatch_key]. If no arguments are specified, it'll print
// out the name of every operator that the Dispatcher knows of. This can be
// useful to answer questions like "list all operators that do not have a CPU
// kernel".
m.def(
"_dispatch_print_registrations_for_dispatch_key",
[](const char* dispatch_key = "") {
auto k = std::string(dispatch_key) == ""
? c10::nullopt
: c10::make_optional(c10::parseDispatchKey(dispatch_key));
auto op_names =
c10::Dispatcher::singleton().getRegistrationsForDispatchKey(k);
for (auto& op : op_names) {
std::cout << op << std::endl;
}
},
py::arg("dispatch_key") = static_cast<const char*>(""));
m.def(
"_dispatch_get_registrations_for_dispatch_key",
[](const char* dispatch_key = "") {
auto k = std::string(dispatch_key) == ""
? c10::nullopt
: c10::make_optional(c10::parseDispatchKey(dispatch_key));
auto op_names =
c10::Dispatcher::singleton().getRegistrationsForDispatchKey(k);
std::vector<std::string> names;
names.reserve(op_names.size());
for (auto& op : op_names) {
names.push_back(
op.name + (op.overload_name == "" ? "" : "." + op.overload_name));
}
return names;
},
py::arg("dispatch_key") = static_cast<const char*>(""));
m.def("_are_functorch_transforms_active", []() {
auto include_set = c10::impl::tls_local_dispatch_key_set().included_;
return (
include_set.has(c10::DispatchKey::FuncTorchDynamicLayerFrontMode) ||
include_set.has(c10::DispatchKey::FuncTorchDynamicLayerBackMode));
});
}
} // namespace dispatch
} // namespace impl
} // namespace torch
|