File: schema_info.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (436 lines) | stat: -rw-r--r-- 19,052 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#include <ATen/core/dispatch/Dispatcher.h>
#include <torch/csrc/utils/schema_info.h>

namespace torch {
namespace utils {
void SchemaInfo::addArgumentValue(
    const std::string& name,
    const at::IValue& value) {
  c10::optional<int> index = schema_.argumentIndexWithName(name);
  TORCH_INTERNAL_ASSERT(
      index != c10::nullopt, "Schema has no argument named ", name);
  value_map_[name] = value;
  alias_maps_current_ = false;
}

void SchemaInfo::addArgumentValues(
    const std::vector<c10::optional<at::IValue>>& value_list) {
  TORCH_INTERNAL_ASSERT(
      value_list.size() <= schema_.arguments().size(),
      "Schema does not have enough arguments for value list");

  for (size_t i = 0; i < value_list.size(); i++) {
    if (value_list[i] != c10::nullopt) {
      value_map_[schema_.arguments()[i].name()] = *(value_list[i]);
      alias_maps_current_ = false;
    }
  }
}

void SchemaInfo::addArgumentValues(
    const std::unordered_map<std::string, at::IValue>& values) {
  for (const auto& key_pair : values) {
    addArgumentValue(key_pair.first, key_pair.second);
  }
}

bool SchemaInfo::hasInputArgumentNamed(const std::string& name) const {
  return std::any_of(
      schema_.arguments().begin(),
      schema_.arguments().end(),
      [&name](const c10::Argument& arg) { return arg.name() == name; });
}

bool SchemaInfo::is_mutable() {
  for (size_t i = 0; i < schema_.arguments().size(); i++) {
    if (is_mutable({c10::SchemaArgType::input, i})) {
      return true;
    }
  }
  return false;
}

bool SchemaInfo::is_mutable(const c10::SchemaArgument& argument) {
  TORCH_INTERNAL_ASSERT(
      argument.index < schema_.getCorrectList(argument.type).size(),
      "Invalid index for schema.");
  if (!alias_maps_current_) {
    generateAliasMaps();
  }
  static const std::vector<SchemaSpecialCasePair> training_ops =
      getTrainingOps();
  const auto& correct_map = (argument.type == c10::SchemaArgType::input)
      ? input_alias_map_
      : output_alias_map_;
  // Note that the training_op checks depend on index because
  // of cases where either running_mean or running_var alias another input
  // argument causing its alias status to change.
  return std::any_of(
      correct_map[argument.index].begin(),
      correct_map[argument.index].end(),
      [this](size_t aliasing_index) {
        const auto is_training_op = std::find_if(
            training_ops.begin(),
            training_ops.end(),
            [this](const auto& training_op) {
              return this->schema_ == training_op.first;
            });

        bool special_case = (is_training_op != training_ops.end()) &&
            is_training_op->second.count(
                this->schema_.arguments()[aliasing_index].name());
        if (special_case) {
          bool has_training = (hasInputArgumentNamed("training") &&
                               !value_map_.count("training")) ||
              (value_map_.count("training") &&
               value_map_.at("training").toBool());
          bool has_train =
              (hasInputArgumentNamed("train") && !value_map_.count("train")) ||
              (value_map_.count("train") && value_map_.at("train").toBool());
          bool has_use_input_stats =
              (hasInputArgumentNamed("use_input_stats") &&
               !value_map_.count("use_input_stats")) ||
              (value_map_.count("use_input_stats") &&
               value_map_.at("use_input_stats").toBool());
          return has_training || has_train || has_use_input_stats;
        } else {
          return this->schema_.is_mutable(
              {c10::SchemaArgType::input, aliasing_index});
        }
      });
}

bool SchemaInfo::has_argument(c10::string_view name) {
  return schema_.argumentIndexWithName(name) != c10::nullopt;
}

bool SchemaInfo::is_mutable(c10::string_view name) {
  c10::optional<int> index = schema_.argumentIndexWithName(name);
  TORCH_INTERNAL_ASSERT(
      index != c10::nullopt, "Schema has no argument named ", name);

  return is_mutable({c10::SchemaArgType::input, static_cast<size_t>(*index)});
}

bool SchemaInfo::is_nondeterministic() const {
  static const c10::FunctionSchema dropout_schema = torch::jit::parseSchema(
      "aten::dropout(Tensor input, float p, bool train) -> Tensor");
  if (dropout_schema == schema_ && value_map_.count("train") &&
      !value_map_.at("train").toBool()) {
    return false;
  }

#if defined C10_MOBILE
  static const std::vector<c10::FunctionSchema> nondeterministic_ops =
      getNonDeterministicOps();
  return std::any_of(
      nondeterministic_ops.begin(),
      nondeterministic_ops.end(),
      [this](const c10 ::FunctionSchema& nondeterministic_op) {
        return nondeterministic_op == this->schema_;
      });
#else
  const auto& op = c10::Dispatcher::singleton().findOp(
      c10::OperatorName(schema_.name(), schema_.overload_name()));
  return op && op->hasTag(at::Tag::nondeterministic_seeded);
#endif
}

bool SchemaInfo::may_alias(
    const c10::SchemaArgument& lhs,
    const c10::SchemaArgument& rhs) {
  bool basic_check = schema_.may_alias(lhs, rhs);
  if (basic_check) {
    return true;
  }
  c10::optional<c10::AliasTypeSet> lhsAliasTypeSet =
      schema_.mapTypeToAliasTypeSet(
          schema_.getCorrectList(lhs.type)[lhs.index].type());
  c10::optional<c10::AliasTypeSet> rhsAliasTypeSet =
      schema_.mapTypeToAliasTypeSet(
          schema_.getCorrectList(rhs.type)[rhs.index].type());
  bool types_can_alias =
      schema_.canAliasTypeSetsAlias(lhsAliasTypeSet, rhsAliasTypeSet);
  if (!types_can_alias) {
    return false;
  }

  if (!alias_maps_current_) {
    generateAliasMaps();
  }
  bool wildcard_alias_check =
      wildcardSet().count(lhs) && wildcardSet().count(rhs);
  if (wildcard_alias_check) {
    return true;
  }

  if (lhs.type == c10::SchemaArgType::input &&
      rhs.type == c10::SchemaArgType::input) {
    return input_alias_map_[lhs.index].count(rhs.index);
  } else if (
      lhs.type == c10::SchemaArgType::output &&
      rhs.type == c10::SchemaArgType::output) {
    for (size_t lhs_alias_input : output_alias_map_[lhs.index]) {
      if (output_alias_map_[rhs.index].count(lhs_alias_input)) {
        return true;
      }
    }
    return false;
  } else if (lhs.type == c10::SchemaArgType::output) {
    return output_alias_map_[lhs.index].count(rhs.index);
  } else {
    return output_alias_map_[rhs.index].count(lhs.index);
  }
}

bool SchemaInfo::may_contain_alias(
    const c10::SchemaArgument& lhs,
    const c10::SchemaArgument& rhs,
    bool bidirectional) {
  bool basic_check = schema_.may_contain_alias(lhs, rhs) || may_alias(lhs, rhs);
  if (basic_check) {
    return true;
  }
  if (!alias_maps_current_) {
    generateAliasMaps();
  }
  if (bidirectional) {
    return mayContainAliasImpl(lhs, rhs) || mayContainAliasImpl(rhs, lhs);
  } else {
    return mayContainAliasImpl(lhs, rhs);
  }
}

bool SchemaInfo::mayContainAliasImpl(
    const c10::SchemaArgument& lhs,
    const c10::SchemaArgument& rhs) {
  c10::optional<c10::AliasTypeSet> lhsContainedAliasTypeSet =
      schema_.getAliasTypeSetContainedTypes(schema_.mapTypeToAliasTypeSet(
          schema_.getCorrectList(lhs.type)[lhs.index].type()));
  c10::optional<c10::AliasTypeSet> rhsAliasTypeSet =
      schema_.mapTypeToAliasTypeSet(
          schema_.getCorrectList(rhs.type)[rhs.index].type());
  bool types_can_alias =
      schema_.canAliasTypeSetsAlias(lhsContainedAliasTypeSet, rhsAliasTypeSet);
  return types_can_alias && containerSet().count(lhs) &&
      wildcardSet().count(rhs);
}

void SchemaInfo::ensureConservativity(
    const std::unordered_set<at::Symbol>& duplicates,
    const std::vector<c10::Argument>& arguments_list,
    c10::SchemaArgType type) {
  for (size_t i = 0; i < arguments_list.size(); i++) {
    if (arguments_list[i].alias_info()) {
      for (const auto& set : arguments_list[i].alias_info()->afterSets()) {
        if (duplicates.count(set)) {
          wildcard_set_.insert({type, i});
        }
      }
    }
  }
}

std::vector<c10::FunctionSchema> SchemaInfo::getNonDeterministicOps() {
  // This list of nondeterministic ops is copied from JIT ir.cpp.
  static const std::vector<std::string> nondeterministic_op_strings = {
      "aten::dropout(Tensor input, float p, bool train) -> Tensor",
      "aten::_fused_dropout(Tensor self, float p, Generator? generator) -> (Tensor, Tensor)",
      "aten::_standard_gamma(Tensor self, Generator? generator) -> Tensor",
      "aten::bernoulli(Tensor self, *, Generator? generator) -> Tensor",
      "aten::bernoulli(Tensor self, float p, *, Generator? generator) -> Tensor",
      "aten::multinomial(Tensor self, int num_samples, bool replacement, *, Generator? generator) -> Tensor",
      "aten::native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor)",
      "aten::normal(Tensor mean, Tensor std, *, Generator? generator) -> Tensor",
      "aten::normal(float mean, Tensor std, *, Generator? generator) -> Tensor",
      "aten::normal(Tensor mean, float std, *, Generator? generator) -> Tensor",
      "aten::poisson(Tensor self, Generator? generator) -> Tensor",
      "aten::binomial(Tensor count, Tensor prob, Generator? generator=None) -> Tensor",
      "aten::rrelu(Tensor self, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
      "aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
      "aten::rand(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
      "aten::rand_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
      "aten::randint(int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
      "aten::randint(int low, int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
      "aten::randint_like(Tensor self, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
      "aten::randint_like(Tensor self, int low, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
      "aten::randn(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
      "aten::randn_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
      "aten::randperm(int n, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor"};

  std::vector<c10::FunctionSchema> nondeterministic_ops;
  nondeterministic_ops.reserve(nondeterministic_op_strings.size());
  for (const std::string& signature : nondeterministic_op_strings) {
    nondeterministic_ops.push_back(torch::jit::parseSchema(signature));
  }

  return nondeterministic_ops;
}

std::vector<SchemaSpecialCasePair> SchemaInfo::getTrainingOps() {
  // This is a list of pairs of ops to sets of strings
  //  where the a boolean variable (either "training",
  // "train" or "use_input_stats") affects the mutability
  // of the unorderered set of strings.
  static const std::vector<std::pair<std::string, std::unordered_set<std::string>>> training_op_pairs =
      {{"aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor",
        {"running_mean", "running_var"}},
       {"aten::instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> Tensor",
        {"running_mean", "running_var"}},
       {"aten::_batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)",
        {"running_mean", "running_var"}},
       {"aten::cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor)",
        {"running_mean", "running_var"}},
       {"aten::miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)",
        {"running_mean", "running_var"}},
       {"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
        {"running_mean", "running_var"}},
       {"aten::native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))",
        {"running_mean", "running_var"}},
       {"aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor",
        {"noise"}},
       {"aten::rrelu_with_noise.out(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)",
        {"noise"}},
       {"rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)",
        {"noise"}}};

  std::vector<SchemaSpecialCasePair> training_ops;
  training_ops.reserve(training_op_pairs.size());
  for (const auto& signature : training_op_pairs) {
    training_ops.emplace_back(
        torch::jit::parseSchema(signature.first), signature.second);
  }

  return training_ops;
}

void SchemaInfo::initSchemaInfo() {
  if (has_init_) {
    return;
  }
  has_init_ = true;

  std::unordered_set<at::Symbol> duplicates;
  auto init_schema_arguments = [this, &duplicates](
                                   const std::vector<c10::Argument>&
                                       arguments_list,
                                   c10::SchemaArgType type) {
    std::unordered_set<at::Symbol> seen;
    for (size_t i = 0; i < arguments_list.size(); i++) {
      const c10::Argument& argument = arguments_list[i];
      if (argument.alias_info()) {
        if (argument.alias_info()->isWildcardAfter()) {
          wildcard_set_.insert({type, i});
        } else {
          // This check is to ensure that the FunctionSchema will accurately
          // be represented when calling may_alias and may_contain_alias
          // on schemas with more than one argument within arguments_list that
          // shares an alias set.
          for (const auto& set : argument.alias_info()->afterSets()) {
            if (seen.count(set)) {
              TORCH_WARN(
                  set.toQualString(),
                  " appears twice in same argument list which will make aliasing checks more conservative.");
              duplicates.insert(set);
            } else {
              seen.insert(set);
            }
          }
        }
      }
      c10::optional<c10::AliasTypeSet> contained_types =
          schema_.getAliasTypeSetContainedTypes(
              schema_.mapTypeToAliasTypeSet(argument.type()));
      if (contained_types && contained_types->size() > 0) {
        container_set_.insert({type, i});
      }
    }
  };

  init_schema_arguments(schema_.arguments(), c10::SchemaArgType::input);
  init_schema_arguments(schema_.returns(), c10::SchemaArgType::output);
  ensureConservativity(
      duplicates, schema_.arguments(), c10::SchemaArgType::input);
  ensureConservativity(
      duplicates, schema_.returns(), c10::SchemaArgType::output);
}

const std::unordered_set<c10::SchemaArgument>& SchemaInfo::wildcardSet() {
  initSchemaInfo();
  return wildcard_set_;
}

const std::unordered_set<c10::SchemaArgument>& SchemaInfo::containerSet() {
  initSchemaInfo();
  return container_set_;
}

void SchemaInfo::generateAliasMaps() {
  initSchemaInfo();

  alias_maps_current_ = true;
  input_alias_map_ = std::vector<std::unordered_set<size_t>>(
      schema_.arguments().size(), std::unordered_set<size_t>());
  output_alias_map_ = std::vector<std::unordered_set<size_t>>(
      schema_.returns().size(), std::unordered_set<size_t>());

  // Fills input_alias_map_
  for (size_t i = 0; i < schema_.arguments().size(); i++) {
    for (size_t j = i; j < schema_.arguments().size(); j++) {
      if (i == j) {
        input_alias_map_[i].insert(i);
      } else if (
          value_map_.count(schema_.arguments()[i].name()) &&
          value_map_.count(schema_.arguments()[j].name())) {
        if (value_map_[schema_.arguments()[i].name()].isAliasOf(
                value_map_[schema_.arguments()[j].name()])) {
          input_alias_map_[i].insert(j);
          input_alias_map_[j].insert(i);
          if (wildcard_set_.count({c10::SchemaArgType::input, i})) {
            wildcard_set_.insert({c10::SchemaArgType::input, j});
          } else if (wildcard_set_.count({c10::SchemaArgType::input, j})) {
            wildcard_set_.insert({c10::SchemaArgType::input, i});
          }
        }
      }
    }
  }

  // Fills wildcard_set with container created wildcards.
  // For instance, given the schema:
  // test(Tensor a, Tensor(*) b, Tensor[] c) -> Tensor
  // where value(a) is contained in value(c), then a will be added to the
  // wildcard set where it can now alias b.
  for (size_t i = 0; i < schema_.arguments().size(); i++) {
    for (size_t j = 0; j < schema_.arguments().size(); j++) {
      // if they are already aliasing, there is no way one contains the other
      if (!input_alias_map_[i].count(j) &&
          value_map_.count(schema_.arguments()[i].name()) &&
          value_map_.count(schema_.arguments()[j].name())) {
        c10::IValue::HashAliasedIValues subValues;
        value_map_[schema_.arguments()[i].name()].getSubValues(subValues);
        if (subValues.count(value_map_[schema_.arguments()[j].name()])) {
          wildcard_set_.insert({c10::SchemaArgType::input, j});
        }
      }
    }
  }

  // Fills output_alias_map_
  for (size_t i = 0; i < schema_.arguments().size(); i++) {
    for (size_t j = 0; j < schema_.returns().size(); j++) {
      if (schema_.may_alias(
              {c10::SchemaArgType::input, i},
              {c10::SchemaArgType::output, j})) {
        if (wildcard_set_.count({c10::SchemaArgType::input, i})) {
          wildcard_set_.insert({c10::SchemaArgType::output, j});
        }
        output_alias_map_[j].insert(
            input_alias_map_[i].begin(), input_alias_map_[i].end());
      }
    }
  }
}

} // namespace utils
} // namespace torch