1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
#include <ATen/core/dispatch/Dispatcher.h>
#include <torch/csrc/utils/schema_info.h>
namespace torch {
namespace utils {
void SchemaInfo::addArgumentValue(
const std::string& name,
const at::IValue& value) {
c10::optional<int> index = schema_.argumentIndexWithName(name);
TORCH_INTERNAL_ASSERT(
index != c10::nullopt, "Schema has no argument named ", name);
value_map_[name] = value;
alias_maps_current_ = false;
}
void SchemaInfo::addArgumentValues(
const std::vector<c10::optional<at::IValue>>& value_list) {
TORCH_INTERNAL_ASSERT(
value_list.size() <= schema_.arguments().size(),
"Schema does not have enough arguments for value list");
for (size_t i = 0; i < value_list.size(); i++) {
if (value_list[i] != c10::nullopt) {
value_map_[schema_.arguments()[i].name()] = *(value_list[i]);
alias_maps_current_ = false;
}
}
}
void SchemaInfo::addArgumentValues(
const std::unordered_map<std::string, at::IValue>& values) {
for (const auto& key_pair : values) {
addArgumentValue(key_pair.first, key_pair.second);
}
}
bool SchemaInfo::hasInputArgumentNamed(const std::string& name) const {
return std::any_of(
schema_.arguments().begin(),
schema_.arguments().end(),
[&name](const c10::Argument& arg) { return arg.name() == name; });
}
bool SchemaInfo::is_mutable() {
for (size_t i = 0; i < schema_.arguments().size(); i++) {
if (is_mutable({c10::SchemaArgType::input, i})) {
return true;
}
}
return false;
}
bool SchemaInfo::is_mutable(const c10::SchemaArgument& argument) {
TORCH_INTERNAL_ASSERT(
argument.index < schema_.getCorrectList(argument.type).size(),
"Invalid index for schema.");
if (!alias_maps_current_) {
generateAliasMaps();
}
static const std::vector<SchemaSpecialCasePair> training_ops =
getTrainingOps();
const auto& correct_map = (argument.type == c10::SchemaArgType::input)
? input_alias_map_
: output_alias_map_;
// Note that the training_op checks depend on index because
// of cases where either running_mean or running_var alias another input
// argument causing its alias status to change.
return std::any_of(
correct_map[argument.index].begin(),
correct_map[argument.index].end(),
[this](size_t aliasing_index) {
const auto is_training_op = std::find_if(
training_ops.begin(),
training_ops.end(),
[this](const auto& training_op) {
return this->schema_ == training_op.first;
});
bool special_case = (is_training_op != training_ops.end()) &&
is_training_op->second.count(
this->schema_.arguments()[aliasing_index].name());
if (special_case) {
bool has_training = (hasInputArgumentNamed("training") &&
!value_map_.count("training")) ||
(value_map_.count("training") &&
value_map_.at("training").toBool());
bool has_train =
(hasInputArgumentNamed("train") && !value_map_.count("train")) ||
(value_map_.count("train") && value_map_.at("train").toBool());
bool has_use_input_stats =
(hasInputArgumentNamed("use_input_stats") &&
!value_map_.count("use_input_stats")) ||
(value_map_.count("use_input_stats") &&
value_map_.at("use_input_stats").toBool());
return has_training || has_train || has_use_input_stats;
} else {
return this->schema_.is_mutable(
{c10::SchemaArgType::input, aliasing_index});
}
});
}
bool SchemaInfo::has_argument(c10::string_view name) {
return schema_.argumentIndexWithName(name) != c10::nullopt;
}
bool SchemaInfo::is_mutable(c10::string_view name) {
c10::optional<int> index = schema_.argumentIndexWithName(name);
TORCH_INTERNAL_ASSERT(
index != c10::nullopt, "Schema has no argument named ", name);
return is_mutable({c10::SchemaArgType::input, static_cast<size_t>(*index)});
}
bool SchemaInfo::is_nondeterministic() const {
static const c10::FunctionSchema dropout_schema = torch::jit::parseSchema(
"aten::dropout(Tensor input, float p, bool train) -> Tensor");
if (dropout_schema == schema_ && value_map_.count("train") &&
!value_map_.at("train").toBool()) {
return false;
}
#if defined C10_MOBILE
static const std::vector<c10::FunctionSchema> nondeterministic_ops =
getNonDeterministicOps();
return std::any_of(
nondeterministic_ops.begin(),
nondeterministic_ops.end(),
[this](const c10 ::FunctionSchema& nondeterministic_op) {
return nondeterministic_op == this->schema_;
});
#else
const auto& op = c10::Dispatcher::singleton().findOp(
c10::OperatorName(schema_.name(), schema_.overload_name()));
return op && op->hasTag(at::Tag::nondeterministic_seeded);
#endif
}
bool SchemaInfo::may_alias(
const c10::SchemaArgument& lhs,
const c10::SchemaArgument& rhs) {
bool basic_check = schema_.may_alias(lhs, rhs);
if (basic_check) {
return true;
}
c10::optional<c10::AliasTypeSet> lhsAliasTypeSet =
schema_.mapTypeToAliasTypeSet(
schema_.getCorrectList(lhs.type)[lhs.index].type());
c10::optional<c10::AliasTypeSet> rhsAliasTypeSet =
schema_.mapTypeToAliasTypeSet(
schema_.getCorrectList(rhs.type)[rhs.index].type());
bool types_can_alias =
schema_.canAliasTypeSetsAlias(lhsAliasTypeSet, rhsAliasTypeSet);
if (!types_can_alias) {
return false;
}
if (!alias_maps_current_) {
generateAliasMaps();
}
bool wildcard_alias_check =
wildcardSet().count(lhs) && wildcardSet().count(rhs);
if (wildcard_alias_check) {
return true;
}
if (lhs.type == c10::SchemaArgType::input &&
rhs.type == c10::SchemaArgType::input) {
return input_alias_map_[lhs.index].count(rhs.index);
} else if (
lhs.type == c10::SchemaArgType::output &&
rhs.type == c10::SchemaArgType::output) {
for (size_t lhs_alias_input : output_alias_map_[lhs.index]) {
if (output_alias_map_[rhs.index].count(lhs_alias_input)) {
return true;
}
}
return false;
} else if (lhs.type == c10::SchemaArgType::output) {
return output_alias_map_[lhs.index].count(rhs.index);
} else {
return output_alias_map_[rhs.index].count(lhs.index);
}
}
bool SchemaInfo::may_contain_alias(
const c10::SchemaArgument& lhs,
const c10::SchemaArgument& rhs,
bool bidirectional) {
bool basic_check = schema_.may_contain_alias(lhs, rhs) || may_alias(lhs, rhs);
if (basic_check) {
return true;
}
if (!alias_maps_current_) {
generateAliasMaps();
}
if (bidirectional) {
return mayContainAliasImpl(lhs, rhs) || mayContainAliasImpl(rhs, lhs);
} else {
return mayContainAliasImpl(lhs, rhs);
}
}
bool SchemaInfo::mayContainAliasImpl(
const c10::SchemaArgument& lhs,
const c10::SchemaArgument& rhs) {
c10::optional<c10::AliasTypeSet> lhsContainedAliasTypeSet =
schema_.getAliasTypeSetContainedTypes(schema_.mapTypeToAliasTypeSet(
schema_.getCorrectList(lhs.type)[lhs.index].type()));
c10::optional<c10::AliasTypeSet> rhsAliasTypeSet =
schema_.mapTypeToAliasTypeSet(
schema_.getCorrectList(rhs.type)[rhs.index].type());
bool types_can_alias =
schema_.canAliasTypeSetsAlias(lhsContainedAliasTypeSet, rhsAliasTypeSet);
return types_can_alias && containerSet().count(lhs) &&
wildcardSet().count(rhs);
}
void SchemaInfo::ensureConservativity(
const std::unordered_set<at::Symbol>& duplicates,
const std::vector<c10::Argument>& arguments_list,
c10::SchemaArgType type) {
for (size_t i = 0; i < arguments_list.size(); i++) {
if (arguments_list[i].alias_info()) {
for (const auto& set : arguments_list[i].alias_info()->afterSets()) {
if (duplicates.count(set)) {
wildcard_set_.insert({type, i});
}
}
}
}
}
std::vector<c10::FunctionSchema> SchemaInfo::getNonDeterministicOps() {
// This list of nondeterministic ops is copied from JIT ir.cpp.
static const std::vector<std::string> nondeterministic_op_strings = {
"aten::dropout(Tensor input, float p, bool train) -> Tensor",
"aten::_fused_dropout(Tensor self, float p, Generator? generator) -> (Tensor, Tensor)",
"aten::_standard_gamma(Tensor self, Generator? generator) -> Tensor",
"aten::bernoulli(Tensor self, *, Generator? generator) -> Tensor",
"aten::bernoulli(Tensor self, float p, *, Generator? generator) -> Tensor",
"aten::multinomial(Tensor self, int num_samples, bool replacement, *, Generator? generator) -> Tensor",
"aten::native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor)",
"aten::normal(Tensor mean, Tensor std, *, Generator? generator) -> Tensor",
"aten::normal(float mean, Tensor std, *, Generator? generator) -> Tensor",
"aten::normal(Tensor mean, float std, *, Generator? generator) -> Tensor",
"aten::poisson(Tensor self, Generator? generator) -> Tensor",
"aten::binomial(Tensor count, Tensor prob, Generator? generator=None) -> Tensor",
"aten::rrelu(Tensor self, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
"aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
"aten::rand(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
"aten::rand_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
"aten::randint(int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
"aten::randint(int low, int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
"aten::randint_like(Tensor self, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
"aten::randint_like(Tensor self, int low, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
"aten::randn(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
"aten::randn_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
"aten::randperm(int n, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor"};
std::vector<c10::FunctionSchema> nondeterministic_ops;
nondeterministic_ops.reserve(nondeterministic_op_strings.size());
for (const std::string& signature : nondeterministic_op_strings) {
nondeterministic_ops.push_back(torch::jit::parseSchema(signature));
}
return nondeterministic_ops;
}
std::vector<SchemaSpecialCasePair> SchemaInfo::getTrainingOps() {
// This is a list of pairs of ops to sets of strings
// where the a boolean variable (either "training",
// "train" or "use_input_stats") affects the mutability
// of the unorderered set of strings.
static const std::vector<std::pair<std::string, std::unordered_set<std::string>>> training_op_pairs =
{{"aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor",
{"running_mean", "running_var"}},
{"aten::instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> Tensor",
{"running_mean", "running_var"}},
{"aten::_batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)",
{"running_mean", "running_var"}},
{"aten::cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor)",
{"running_mean", "running_var"}},
{"aten::miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)",
{"running_mean", "running_var"}},
{"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
{"running_mean", "running_var"}},
{"aten::native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))",
{"running_mean", "running_var"}},
{"aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor",
{"noise"}},
{"aten::rrelu_with_noise.out(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)",
{"noise"}},
{"rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)",
{"noise"}}};
std::vector<SchemaSpecialCasePair> training_ops;
training_ops.reserve(training_op_pairs.size());
for (const auto& signature : training_op_pairs) {
training_ops.emplace_back(
torch::jit::parseSchema(signature.first), signature.second);
}
return training_ops;
}
void SchemaInfo::initSchemaInfo() {
if (has_init_) {
return;
}
has_init_ = true;
std::unordered_set<at::Symbol> duplicates;
auto init_schema_arguments = [this, &duplicates](
const std::vector<c10::Argument>&
arguments_list,
c10::SchemaArgType type) {
std::unordered_set<at::Symbol> seen;
for (size_t i = 0; i < arguments_list.size(); i++) {
const c10::Argument& argument = arguments_list[i];
if (argument.alias_info()) {
if (argument.alias_info()->isWildcardAfter()) {
wildcard_set_.insert({type, i});
} else {
// This check is to ensure that the FunctionSchema will accurately
// be represented when calling may_alias and may_contain_alias
// on schemas with more than one argument within arguments_list that
// shares an alias set.
for (const auto& set : argument.alias_info()->afterSets()) {
if (seen.count(set)) {
TORCH_WARN(
set.toQualString(),
" appears twice in same argument list which will make aliasing checks more conservative.");
duplicates.insert(set);
} else {
seen.insert(set);
}
}
}
}
c10::optional<c10::AliasTypeSet> contained_types =
schema_.getAliasTypeSetContainedTypes(
schema_.mapTypeToAliasTypeSet(argument.type()));
if (contained_types && contained_types->size() > 0) {
container_set_.insert({type, i});
}
}
};
init_schema_arguments(schema_.arguments(), c10::SchemaArgType::input);
init_schema_arguments(schema_.returns(), c10::SchemaArgType::output);
ensureConservativity(
duplicates, schema_.arguments(), c10::SchemaArgType::input);
ensureConservativity(
duplicates, schema_.returns(), c10::SchemaArgType::output);
}
const std::unordered_set<c10::SchemaArgument>& SchemaInfo::wildcardSet() {
initSchemaInfo();
return wildcard_set_;
}
const std::unordered_set<c10::SchemaArgument>& SchemaInfo::containerSet() {
initSchemaInfo();
return container_set_;
}
void SchemaInfo::generateAliasMaps() {
initSchemaInfo();
alias_maps_current_ = true;
input_alias_map_ = std::vector<std::unordered_set<size_t>>(
schema_.arguments().size(), std::unordered_set<size_t>());
output_alias_map_ = std::vector<std::unordered_set<size_t>>(
schema_.returns().size(), std::unordered_set<size_t>());
// Fills input_alias_map_
for (size_t i = 0; i < schema_.arguments().size(); i++) {
for (size_t j = i; j < schema_.arguments().size(); j++) {
if (i == j) {
input_alias_map_[i].insert(i);
} else if (
value_map_.count(schema_.arguments()[i].name()) &&
value_map_.count(schema_.arguments()[j].name())) {
if (value_map_[schema_.arguments()[i].name()].isAliasOf(
value_map_[schema_.arguments()[j].name()])) {
input_alias_map_[i].insert(j);
input_alias_map_[j].insert(i);
if (wildcard_set_.count({c10::SchemaArgType::input, i})) {
wildcard_set_.insert({c10::SchemaArgType::input, j});
} else if (wildcard_set_.count({c10::SchemaArgType::input, j})) {
wildcard_set_.insert({c10::SchemaArgType::input, i});
}
}
}
}
}
// Fills wildcard_set with container created wildcards.
// For instance, given the schema:
// test(Tensor a, Tensor(*) b, Tensor[] c) -> Tensor
// where value(a) is contained in value(c), then a will be added to the
// wildcard set where it can now alias b.
for (size_t i = 0; i < schema_.arguments().size(); i++) {
for (size_t j = 0; j < schema_.arguments().size(); j++) {
// if they are already aliasing, there is no way one contains the other
if (!input_alias_map_[i].count(j) &&
value_map_.count(schema_.arguments()[i].name()) &&
value_map_.count(schema_.arguments()[j].name())) {
c10::IValue::HashAliasedIValues subValues;
value_map_[schema_.arguments()[i].name()].getSubValues(subValues);
if (subValues.count(value_map_[schema_.arguments()[j].name()])) {
wildcard_set_.insert({c10::SchemaArgType::input, j});
}
}
}
}
// Fills output_alias_map_
for (size_t i = 0; i < schema_.arguments().size(); i++) {
for (size_t j = 0; j < schema_.returns().size(); j++) {
if (schema_.may_alias(
{c10::SchemaArgType::input, i},
{c10::SchemaArgType::output, j})) {
if (wildcard_set_.count({c10::SchemaArgType::input, i})) {
wildcard_set_.insert({c10::SchemaArgType::output, j});
}
output_alias_map_[j].insert(
input_alias_map_[i].begin(), input_alias_map_[i].end());
}
}
}
}
} // namespace utils
} // namespace torch
|