File: tensor_numpy.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (462 lines) | stat: -rw-r--r-- 14,763 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#include <torch/csrc/THP.h>
#include <torch/csrc/utils/tensor_numpy.h>
#define WITH_NUMPY_IMPORT_ARRAY
#include <c10/util/irange.h>
#include <torch/csrc/utils/numpy_stub.h>

#ifndef USE_NUMPY
namespace torch {
namespace utils {
PyObject* tensor_to_numpy(const at::Tensor&, bool) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_numpy(
    PyObject* obj,
    bool warn_if_not_writeable /*=true*/) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}

bool is_numpy_available() {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}

bool is_numpy_int(PyObject* obj) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_scalar(PyObject* obj) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}

void warn_numpy_not_writeable() {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
} // namespace utils
} // namespace torch
#else

#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/object_ptr.h>

#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <memory>
#include <sstream>
#include <stdexcept>

using namespace at;
using namespace torch::autograd;

namespace torch {
namespace utils {

bool is_numpy_available() {
  static bool available = []() {
    if (_import_array() >= 0) {
      return true;
    }
    // Try to get exception message, print warning and return false
    std::string message = "Failed to initialize NumPy";
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    PyObject *type, *value, *traceback;
    PyErr_Fetch(&type, &value, &traceback);
    if (auto str = value ? PyObject_Str(value) : nullptr) {
      if (auto enc_str = PyUnicode_AsEncodedString(str, "utf-8", "strict")) {
        if (auto byte_str = PyBytes_AS_STRING(enc_str)) {
          message += ": " + std::string(byte_str);
        }
        Py_XDECREF(enc_str);
      }
      Py_XDECREF(str);
    }
    PyErr_Clear();
    TORCH_WARN(message);
    return false;
  }();
  return available;
}
static std::vector<npy_intp> to_numpy_shape(IntArrayRef x) {
  // shape and stride conversion from int64_t to npy_intp
  auto nelem = x.size();
  auto result = std::vector<npy_intp>(nelem);
  for (const auto i : c10::irange(nelem)) {
    result[i] = static_cast<npy_intp>(x[i]);
  }
  return result;
}

static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
  // shape and stride conversion from npy_intp to int64_t
  auto result = std::vector<int64_t>(ndim);
  for (const auto i : c10::irange(ndim)) {
    result[i] = static_cast<int64_t>(values[i]);
  }
  return result;
}

static std::vector<int64_t> seq_to_aten_shape(PyObject* py_seq) {
  int ndim = PySequence_Length(py_seq);
  if (ndim == -1) {
    throw TypeError("shape and strides must be sequences");
  }
  auto result = std::vector<int64_t>(ndim);
  for (const auto i : c10::irange(ndim)) {
    auto item = THPObjectPtr(PySequence_GetItem(py_seq, i));
    if (!item)
      throw python_error();

    result[i] = PyLong_AsLongLong(item);
    if (result[i] == -1 && PyErr_Occurred())
      throw python_error();
  }
  return result;
}

PyObject* tensor_to_numpy(const at::Tensor& tensor, bool force /*=false*/) {
  TORCH_CHECK(is_numpy_available(), "Numpy is not available");

  TORCH_CHECK(
      !tensor.unsafeGetTensorImpl()->is_python_dispatch(),
      ".numpy() is not supported for tensor subclasses.");

  TORCH_CHECK_TYPE(
      tensor.layout() == Layout::Strided,
      "can't convert ",
      c10::str(tensor.layout()).c_str(),
      " layout tensor to numpy. ",
      "Use Tensor.dense() first.");

  if (!force) {
    TORCH_CHECK_TYPE(
        tensor.device().type() == DeviceType::CPU,
        "can't convert ",
        tensor.device().str().c_str(),
        " device type tensor to numpy. Use Tensor.cpu() to ",
        "copy the tensor to host memory first.");

    TORCH_CHECK(
        !(at::GradMode::is_enabled() && tensor.requires_grad()),
        "Can't call numpy() on Tensor that requires grad. "
        "Use tensor.detach().numpy() instead.");

    TORCH_CHECK(
        !tensor.is_conj(),
        "Can't call numpy() on Tensor that has conjugate bit set. ",
        "Use tensor.resolve_conj().numpy() instead.");

    TORCH_CHECK(
        !tensor.is_neg(),
        "Can't call numpy() on Tensor that has negative bit set. "
        "Use tensor.resolve_neg().numpy() instead.");
  }

  auto prepared_tensor = tensor.detach().cpu().resolve_conj().resolve_neg();

  auto dtype = aten_to_numpy_dtype(prepared_tensor.scalar_type());
  auto sizes = to_numpy_shape(prepared_tensor.sizes());
  auto strides = to_numpy_shape(prepared_tensor.strides());

  // NumPy strides use bytes. Torch strides use element counts.
  auto element_size_in_bytes = prepared_tensor.element_size();
  for (auto& stride : strides) {
    stride *= element_size_in_bytes;
  }

  auto array = THPObjectPtr(PyArray_New(
      &PyArray_Type,
      prepared_tensor.dim(),
      sizes.data(),
      dtype,
      strides.data(),
      prepared_tensor.data_ptr(),
      0,
      NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE,
      nullptr));
  if (!array)
    return nullptr;

  // TODO: This attempts to keep the underlying memory alive by setting the base
  // object of the ndarray to the tensor and disabling resizes on the storage.
  // This is not sufficient. For example, the tensor's storage may be changed
  // via Tensor.set_, which can free the underlying memory.
  PyObject* py_tensor = THPVariable_Wrap(prepared_tensor);
  if (!py_tensor)
    throw python_error();
  if (PyArray_SetBaseObject((PyArrayObject*)array.get(), py_tensor) == -1) {
    return nullptr;
  }
  // Use the private storage API
  prepared_tensor.storage().unsafeGetStorageImpl()->set_resizable(false);

  return array.release();
}

void warn_numpy_not_writeable() {
  TORCH_WARN_ONCE(
      "The given NumPy array is not writable, and PyTorch does "
      "not support non-writable tensors. This means writing to this tensor "
      "will result in undefined behavior. "
      "You may want to copy the array to protect its data or make it writable "
      "before converting it to a tensor. This type of warning will be "
      "suppressed for the rest of this program.");
}

at::Tensor tensor_from_numpy(
    PyObject* obj,
    bool warn_if_not_writeable /*=true*/) {
  if (!is_numpy_available()) {
    throw std::runtime_error("Numpy is not available");
  }
  if (!PyArray_Check(obj)) {
    throw TypeError("expected np.ndarray (got %s)", Py_TYPE(obj)->tp_name);
  }
  auto array = (PyArrayObject*)obj;

  // warn_if_not_writable is true when a copy of numpy variable is created.
  // the warning is suppressed when a copy is being created.
  if (!PyArray_ISWRITEABLE(array) && warn_if_not_writeable) {
    warn_numpy_not_writeable();
  }

  int ndim = PyArray_NDIM(array);
  auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
  auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
  // NumPy strides use bytes. Torch strides use element counts.
  auto element_size_in_bytes = PyArray_ITEMSIZE(array);
  for (auto& stride : strides) {
    if (stride % element_size_in_bytes != 0) {
      throw ValueError(
          "given numpy array strides not a multiple of the element byte size. "
          "Copy the numpy array to reallocate the memory.");
    }
    stride /= element_size_in_bytes;
  }

  for (const auto i : c10::irange(ndim)) {
    if (strides[i] < 0) {
      throw ValueError(
          "At least one stride in the given numpy array is negative, "
          "and tensors with negative strides are not currently supported. "
          "(You can probably work around this by making a copy of your array "
          " with array.copy().) ");
    }
  }

  void* data_ptr = PyArray_DATA(array);
  if (!PyArray_EquivByteorders(PyArray_DESCR(array)->byteorder, NPY_NATIVE)) {
    throw ValueError(
        "given numpy array has byte order different from the native byte order. "
        "Conversion between byte orders is currently not supported.");
  }
  Py_INCREF(obj);
  return at::lift_fresh(at::from_blob(
      data_ptr,
      sizes,
      strides,
      [obj](void* data) {
        pybind11::gil_scoped_acquire gil;
        Py_DECREF(obj);
      },
      at::device(kCPU).dtype(numpy_dtype_to_aten(PyArray_TYPE(array)))));
}

int aten_to_numpy_dtype(const ScalarType scalar_type) {
  switch (scalar_type) {
    case kDouble:
      return NPY_DOUBLE;
    case kFloat:
      return NPY_FLOAT;
    case kHalf:
      return NPY_HALF;
    case kComplexDouble:
      return NPY_COMPLEX128;
    case kComplexFloat:
      return NPY_COMPLEX64;
    case kLong:
      return NPY_INT64;
    case kInt:
      return NPY_INT32;
    case kShort:
      return NPY_INT16;
    case kChar:
      return NPY_INT8;
    case kByte:
      return NPY_UINT8;
    case kBool:
      return NPY_BOOL;
    default:
      throw TypeError("Got unsupported ScalarType %s", toString(scalar_type));
  }
}

ScalarType numpy_dtype_to_aten(int dtype) {
  switch (dtype) {
    case NPY_DOUBLE:
      return kDouble;
    case NPY_FLOAT:
      return kFloat;
    case NPY_HALF:
      return kHalf;
    case NPY_COMPLEX64:
      return kComplexFloat;
    case NPY_COMPLEX128:
      return kComplexDouble;
    case NPY_INT16:
      return kShort;
    case NPY_INT8:
      return kChar;
    case NPY_UINT8:
      return kByte;
    case NPY_BOOL:
      return kBool;
    default:
      // Workaround: MSVC does not support two switch cases that have the same
      // value
      if (dtype == NPY_INT || dtype == NPY_INT32) {
        // To cover all cases we must use NPY_INT because
        // NPY_INT32 is an alias which maybe equal to:
        // - NPY_INT, when sizeof(int) = 4 and sizeof(long) = 8
        // - NPY_LONG, when sizeof(int) = 4 and sizeof(long) = 4
        return kInt;
      } else if (dtype == NPY_LONGLONG || dtype == NPY_INT64) {
        // NPY_INT64 is an alias which maybe equal to:
        // - NPY_LONG, when sizeof(long) = 8 and sizeof(long long) = 8
        // - NPY_LONGLONG, when sizeof(long) = 4 and sizeof(long long) = 8
        return kLong;
      } else {
        break; // break as if this is one of the cases above because this is
               // only a workaround
      }
  }
  auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
  if (!pytype)
    throw python_error();
  throw TypeError(
      "can't convert np.ndarray of type %s. The only supported types are: "
      "float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.",
      ((PyTypeObject*)pytype.get())->tp_name);
}

bool is_numpy_int(PyObject* obj) {
  return is_numpy_available() && PyArray_IsScalar((obj), Integer);
}

bool is_numpy_scalar(PyObject* obj) {
  return is_numpy_available() &&
      (is_numpy_int(obj) || PyArray_IsScalar(obj, Bool) ||
       PyArray_IsScalar(obj, Floating) ||
       PyArray_IsScalar(obj, ComplexFloating));
}

at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
  if (!is_numpy_available()) {
    throw std::runtime_error("Numpy is not available");
  }
  auto cuda_dict =
      THPObjectPtr(PyObject_GetAttrString(obj, "__cuda_array_interface__"));
  TORCH_INTERNAL_ASSERT(cuda_dict);

  if (!PyDict_Check(cuda_dict.get())) {
    throw TypeError("`__cuda_array_interface__` must be a dict");
  }

  // Extract the `obj.__cuda_array_interface__['shape']` attribute
  std::vector<int64_t> sizes;
  {
    PyObject* py_shape = PyDict_GetItemString(cuda_dict, "shape");
    if (py_shape == nullptr) {
      throw TypeError("attribute `shape` must exist");
    }
    sizes = seq_to_aten_shape(py_shape);
  }

  // Extract the `obj.__cuda_array_interface__['typestr']` attribute
  ScalarType dtype;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  int dtype_size_in_bytes;
  {
    PyObject* py_typestr = PyDict_GetItemString(cuda_dict, "typestr");
    if (py_typestr == nullptr) {
      throw TypeError("attribute `typestr` must exist");
    }
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    PyArray_Descr* descr;
    if (!PyArray_DescrConverter(py_typestr, &descr)) {
      throw ValueError("cannot parse `typestr`");
    }
    dtype = numpy_dtype_to_aten(descr->type_num);
    dtype_size_in_bytes = descr->elsize;
    TORCH_INTERNAL_ASSERT(dtype_size_in_bytes > 0);
  }

  // Extract the `obj.__cuda_array_interface__['data']` attribute
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  void* data_ptr;
  {
    PyObject* py_data = PyDict_GetItemString(cuda_dict, "data");
    if (py_data == nullptr) {
      throw TypeError("attribute `shape` data exist");
    }
    if (!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
      throw TypeError("`data` must be a 2-tuple of (int, bool)");
    }
    data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
    if (data_ptr == nullptr && PyErr_Occurred()) {
      throw python_error();
    }
    int read_only = PyObject_IsTrue(PyTuple_GET_ITEM(py_data, 1));
    if (read_only == -1) {
      throw python_error();
    }
    if (read_only) {
      throw TypeError(
          "the read only flag is not supported, should always be False");
    }
  }

  // Extract the `obj.__cuda_array_interface__['strides']` attribute
  std::vector<int64_t> strides;
  {
    PyObject* py_strides = PyDict_GetItemString(cuda_dict, "strides");
    if (py_strides != nullptr && py_strides != Py_None) {
      if (PySequence_Length(py_strides) == -1 ||
          static_cast<size_t>(PySequence_Length(py_strides)) != sizes.size()) {
        throw TypeError(
            "strides must be a sequence of the same length as shape");
      }
      strides = seq_to_aten_shape(py_strides);

      // __cuda_array_interface__ strides use bytes. Torch strides use element
      // counts.
      for (auto& stride : strides) {
        if (stride % dtype_size_in_bytes != 0) {
          throw ValueError(
              "given array strides not a multiple of the element byte size. "
              "Make a copy of the array to reallocate the memory.");
        }
        stride /= dtype_size_in_bytes;
      }
    } else {
      strides = at::detail::defaultStrides(sizes);
    }
  }

  Py_INCREF(obj);
  return at::from_blob(
      data_ptr,
      sizes,
      strides,
      [obj](void* data) {
        pybind11::gil_scoped_acquire gil;
        Py_DECREF(obj);
      },
      at::device(kCUDA).dtype(dtype));
}
} // namespace utils
} // namespace torch

#endif // USE_NUMPY