1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
import gc
import torch
from ._utils import _dummy_type
if not hasattr(torch._C, '_CudaStreamBase'):
# Define dummy base classes
torch._C.__dict__['_CUDAGraph'] = _dummy_type('_CUDAGraph')
torch._C.__dict__['_graph_pool_handle'] = _dummy_type('_graph_pool_handle')
torch._C.__dict__['_cuda_isCurrentStreamCapturing'] = _dummy_type('_cuda_isCurrentStreamCapturing')
from torch._C import _CUDAGraph # noqa: F401
from torch._C import _graph_pool_handle
from torch._C import _cuda_isCurrentStreamCapturing
def is_current_stream_capturing():
r"""
Returns True if CUDA graph capture is underway on the current CUDA stream, False otherwise.
If a CUDA context does not exist on the current device, returns False without initializing the context.
"""
return _cuda_isCurrentStreamCapturing()
# Python shim helps Sphinx process docstrings more reliably.
def graph_pool_handle():
r"""
Returns an opaque token representing the id of a graph memory pool.
See :ref:`Graph memory management<graph-memory-management>`.
.. warning::
This API is in beta and may change in future releases.
"""
return _graph_pool_handle()
# Python shim helps Sphinx process docstrings more reliably.
class CUDAGraph(torch._C._CUDAGraph):
r"""
Wrapper around a CUDA graph.
.. warning::
This API is in beta and may change in future releases.
"""
def __new__(cls):
return super(CUDAGraph, cls).__new__(cls)
def __init__(self):
super(CUDAGraph, self).__init__()
def capture_begin(self, pool=None):
r"""
Begins capturing CUDA work on the current stream.
Typically, you shouldn't call ``capture_begin`` yourself.
Use :class:`~torch.cuda.graph` or :func:`~torch.cuda.make_graphed_callables`,
which call ``capture_begin`` internally.
Arguments:
pool (optional): Token (returned by :func:`~torch.cuda.graph_pool_handle` or
:meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) that hints this graph may share memory
with the indicated pool. See :ref:`Graph memory management<graph-memory-management>`.
"""
# I'm not sure if pybind11 converts a None arg to the default defined on the C++ side,
# so I'm not taking any chances.
if pool is None:
super(CUDAGraph, self).capture_begin()
else:
super(CUDAGraph, self).capture_begin(pool)
def capture_end(self):
r"""
Ends CUDA graph capture on the current stream.
After ``capture_end``, ``replay`` may be called on this instance.
Typically, you shouldn't call ``capture_end`` yourself.
Use :class:`~torch.cuda.graph` or :func:`~torch.cuda.make_graphed_callables`,
which call ``capture_end`` internally.
"""
super(CUDAGraph, self).capture_end()
def replay(self):
r"""
Replays the CUDA work captured by this graph.
"""
super(CUDAGraph, self).replay()
def reset(self):
r"""
Deletes the graph currently held by this instance.
"""
super(CUDAGraph, self).reset()
def pool(self):
r"""
Returns an opaque token representing the id of this graph's memory pool.
This id can optionally be passed to another graph's ``capture_begin``,
which hints the other graph may share the same memory pool.
"""
return super(CUDAGraph, self).pool()
class graph(object):
r"""
Context-manager that captures CUDA work into a :class:`torch.cuda.CUDAGraph`
object for later replay.
See :ref:`CUDA Graphs <cuda-graph-semantics>` for a general introduction,
detailed use, and constraints.
Arguments:
cuda_graph (torch.cuda.CUDAGraph): Graph object used for capture.
pool (optional): Opaque token (returned by a call to :func:`~torch.cuda.graph_pool_handle()` or
:meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) hinting this graph's capture
may share memory from the specified pool. See :ref:`Graph memory management<graph-memory-management>`.
stream (torch.cuda.Stream, optional): If supplied, will be set as the current stream in the context.
If not supplied, ``graph`` sets its own internal side stream as the current stream in the context.
.. note::
For effective memory sharing, if you pass a ``pool`` used by a previous capture and the previous capture
used an explicit ``stream`` argument, you should pass the same ``stream`` argument to this capture.
.. warning::
This API is in beta and may change in future releases.
"""
default_capture_stream = None
def __init__(self,
cuda_graph,
pool=None,
stream=None):
# Lazy-init of default_capture_stream helps avoid circular-import errors.
# Not thread safe, but graphs already have the general (explicitly documented)
# restriction that only one capture may be underway at a time in the process.
if self.__class__.default_capture_stream is None:
self.__class__.default_capture_stream = torch.cuda.Stream()
self.pool = () if pool is None else (pool,)
self.capture_stream = stream if stream is not None else self.__class__.default_capture_stream
assert self.capture_stream is not None
self.stream_ctx = torch.cuda.stream(self.capture_stream)
self.cuda_graph = cuda_graph
def __enter__(self):
# Free as much memory as we can for the graph
torch.cuda.synchronize()
gc.collect()
torch.cuda.empty_cache()
# Stackoverflow seems comfortable with this pattern
# https://stackoverflow.com/questions/26635684/calling-enter-and-exit-manually#39172487
self.stream_ctx.__enter__()
self.cuda_graph.capture_begin(*self.pool)
def __exit__(self, exc_type, exc_value, traceback):
self.cuda_graph.capture_end()
self.stream_ctx.__exit__(exc_type, exc_value, traceback)
# returning None should propagate exceptions from either capture_end or stream_ctx.__exit__()
def make_graphed_callables(callables, sample_args, num_warmup_iters=3):
r"""
Accepts callables (functions or :class:`nn.Module<torch.nn.Module>`\ s)
and returns graphed versions.
Each graphed callable's forward pass runs its source callable's
forward CUDA work as a CUDA graph inside a single autograd node.
The graphed callable's forward pass also appends
a backward node to the autograd graph. During backward, this node runs the
callable's backward work as a CUDA graph.
Therefore, each graphed callable should be a drop-in replacement for its source callable
in an autograd-enabled training loop.
See :ref:`Partial-network capture<partial-network-capture>` for detailed use and constraints.
If you pass a tuple of several callables, their captures will use the same memory pool.
See :ref:`Graph memory management<graph-memory-management>` for when this is appropriate.
Arguments:
callables (torch.nn.Module or Python function, or tuple of these): Callable or callables to graph.
See :ref:`Graph memory management<graph-memory-management>` for when passing a tuple of callables
is appropriate. If you pass a tuple of callables, their order in the tuple must be the same order
they'll run in the live workload.
sample_args (tuple of Tensors, or tuple of tuples of Tensors): Samples args for each callable.
If a single callable was passed, ``sample_args`` must be a single tuple of argument Tensors.
If a tuple of callables was passed, ``sample_args`` must be tuple of tuples of argument Tensors.
num_warmup_iters (int): The number of warmup iterations. Currently, ``DataDistributedParallel`` needs
11 iterations for warm up. Default: ``3``.
.. note::
The ``requires_grad`` state of each Tensor in ``sample_args`` must match the state
that's expected for the corresponding real input in the training loop.
.. warning::
This API is in beta and may change in future releases.
.. warning::
``sample_args`` for each callable must be a tuple of Tensors. Other types and keyword args
are not allowed.
.. warning::
Returned callables do not support higher order differentiation (e.g., double backward).
.. warning::
In any :class:`~torch.nn.Module` passed to :func:`~make_graphed_callables`, only parameters
may be trainable. Buffers must have ``requires_grad=False``.
.. warning::
After you pass a :class:`torch.nn.Module` through :func:`~make_graphed_callables`,
you may not add or remove any of that Module's parameters or buffers.
.. warning::
:class:`torch.nn.Module`\s passed to :func:`~torch.cuda.make_graphed_callables` must not have module hooks
registered on them at the time they are passed. However, registering hooks on modules *after* passing them
through :func:`~torch.cuda.make_graphed_callables` is allowed.
.. warning::
When running a graphed callable, you must pass its arguments in the same order and format
they appeared in that callable's ``sample_args``.
.. warning::
The automatic mixed precision is supported in :func:`~torch.cuda.make_graphed_callables` only with disabled
caching. The context manager `torch.cuda.amp.autocast()` must have `cache_enabled=False`.
.. warning::
All Tensor outputs of graphed callables must require grad.
"""
if torch.is_autocast_enabled() and torch.is_autocast_cache_enabled():
raise RuntimeError("make_graphed_callables does not support the autocast caching. Please set `cache_enabled=False`.")
just_one_callable = False
if not isinstance(callables, tuple):
just_one_callable = True
callables = (callables,)
sample_args = (sample_args,)
for c, args in zip(callables, sample_args):
if isinstance(c, torch.nn.Module):
assert len(c._backward_hooks) == 0 and len(c._forward_hooks) == 0 and len(c._forward_pre_hooks) == 0, \
"Modules must not have hooks registered at the time they are passed. However, registering hooks " + \
"on modules after passing them through make_graphed_callables is allowed."
assert all(b.requires_grad is False for b in c.buffers()), "In any :class:`~torch.nn.Module` passed to " + \
":func:`~make_graphed_callables`, only parameters may be trainable. All buffers must have " + \
"``requires_grad=False``."
assert all(isinstance(arg, torch.Tensor) for arg in args), "In the beta API, sample_args " + \
"for each callable must be a tuple of Tensors. Other types and keyword args are not allowed."
# If a callable is an nn.Module, its graph's full input surface is the args the user explicitly
# passes to forward (ie, its sample_args) AND the module's parameter attributes.
per_callable_len_user_args = [len(args) for args in sample_args]
per_callable_module_params = [tuple(c.parameters()) if isinstance(c, torch.nn.Module) else ()
for c in callables]
per_callable_static_input_surfaces = [sample_args[i] + per_callable_module_params[i]
for i in range(len(callables))]
fwd_graphs = [torch.cuda.CUDAGraph() for _ in range(len(callables))]
bwd_graphs = [torch.cuda.CUDAGraph() for _ in range(len(callables))]
mempool = graph_pool_handle()
# Warmup
# Hopefully prevents cudnn benchmarking and other lazy-initialization cuda work
# from ending up in any captures.
torch.cuda.synchronize()
with torch.cuda.stream(torch.cuda.Stream()):
for func, args, static_input_surface in zip(callables,
sample_args,
per_callable_static_input_surfaces):
for _ in range(num_warmup_iters):
outputs = func(*args)
outputs = (outputs,) if isinstance(outputs, torch.Tensor) else outputs
grad_inputs = torch.autograd.grad(outputs=outputs,
inputs=tuple(i for i in static_input_surface if i.requires_grad),
grad_outputs=tuple(torch.empty_like(o) for o in outputs),
only_inputs=True,
allow_unused=False)
del outputs, grad_inputs
torch.cuda.synchronize()
# All captures here share a mempool. To avoid replays corrupting each other's memory,
# the safest approach is to capture all passes in the same order they'll run:
# fwd 1, fwd 2, ... fwd N, then bwd N, bwd N-1, ... bwd 1.
# Capture forward graphs
per_callable_static_outputs = []
per_callable_output_was_tensor = []
for func, args, fwd_graph in zip(callables,
sample_args,
fwd_graphs):
with torch.cuda.graph(fwd_graph, pool=mempool):
outputs = func(*args)
# Assumes model output is a tensor or tuple of tensors
if isinstance(outputs, torch.Tensor):
per_callable_output_was_tensor.append(True)
outputs = (outputs,)
else:
per_callable_output_was_tensor.append(False)
per_callable_static_outputs.append(outputs)
# Capture backward graphs in reverse order
per_callable_static_grad_outputs = []
per_callable_static_grad_inputs = []
for static_input_surface, static_outputs, bwd_graph, module_params in \
zip(reversed(per_callable_static_input_surfaces),
reversed(per_callable_static_outputs),
reversed(bwd_graphs),
reversed(per_callable_module_params)):
# For now, assumes all static_outputs require grad
assert all(o.requires_grad for o in static_outputs), "Outputs of graphed callables must require grad."
static_grad_outputs = tuple(torch.empty_like(o) for o in static_outputs)
with torch.cuda.graph(bwd_graph, pool=mempool):
grad_inputs = torch.autograd.grad(outputs=static_outputs,
inputs=tuple(i for i in static_input_surface if i.requires_grad),
grad_outputs=static_grad_outputs,
only_inputs=True,
allow_unused=False)
# Constructs a tuple suitable for returning from Graphed.backward:
# Pads out the actually-needed grads with Nones in gradient slots for inputs that don't require grad.
# I couldn't think of a slick one-liner for this pattern.
static_grad_inputs = []
grad_idx = 0
for arg in static_input_surface:
if arg.requires_grad:
static_grad_inputs.append(grad_inputs[grad_idx])
grad_idx += 1
else:
static_grad_inputs.append(None) # type: ignore[arg-type]
static_grad_inputs = tuple(static_grad_inputs) # type: ignore[assignment]
per_callable_static_grad_outputs.append(static_grad_outputs)
per_callable_static_grad_inputs.append(static_grad_inputs)
# Reverses the most recent two lists
per_callable_static_grad_outputs = list(reversed(per_callable_static_grad_outputs))
per_callable_static_grad_inputs = list(reversed(per_callable_static_grad_inputs))
# Now for every per_callable list, per_callable_*[i] holds the stuff for the ith callable.
def make_graphed_autograd_function(fwd_graph,
bwd_graph,
module_params,
len_user_args,
output_was_tensor,
static_input_surface,
static_outputs,
static_grad_outputs,
static_grad_inputs):
class Graphed(torch.autograd.Function):
@staticmethod
def forward(ctx, *inputs):
# At this stage, only the user args may (potentially) be new tensors.
for i in range(len_user_args):
if static_input_surface[i].data_ptr() != inputs[i].data_ptr():
static_input_surface[i].copy_(inputs[i])
fwd_graph.replay()
assert isinstance(static_outputs, tuple)
return tuple(o.detach() for o in static_outputs)
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, *grads):
for g, grad in zip(static_grad_outputs, grads):
if g is None:
assert grad is None
else:
# don't copy if autograd gods have been kind and the
# incoming grad is already in the right place
if g.data_ptr() != grad.data_ptr():
g.copy_(grad)
bwd_graph.replay()
# Input args that didn't require grad expect a None gradient.
assert isinstance(static_grad_inputs, tuple)
return tuple(b.detach() if b is not None else b for b in static_grad_inputs)
def functionalized(*user_args):
# Runs the autograd function with inputs == all inputs to the graph that might require grad
# (explicit user args + module parameters)
# Assumes module params didn't change since capture.
out = Graphed.apply(*(user_args + module_params))
return out[0] if output_was_tensor else out
return functionalized
# Put together the final graphed callables
ret = []
for i, func in enumerate(callables):
graphed = make_graphed_autograd_function(fwd_graphs[i],
bwd_graphs[i],
per_callable_module_params[i],
per_callable_len_user_args[i],
per_callable_output_was_tensor[i],
per_callable_static_input_surfaces[i],
per_callable_static_outputs[i],
per_callable_static_grad_outputs[i],
per_callable_static_grad_inputs[i])
if isinstance(func, torch.nn.Module):
def make_graphed_forward(func, graph_training_state, graphed, orig_fwd):
def new_fwd(*user_args):
# If the module's training-or-eval state matches what we graphed,
# run the graph, otherwise run the original forward method
if func.training == graph_training_state:
return graphed(*user_args)
else:
return orig_fwd(*user_args)
return new_fwd
func.forward = make_graphed_forward(func, func.training, graphed, func.forward) # type: ignore[assignment]
ret.append(func)
else:
ret.append(graphed)
if just_one_callable:
return ret[0]
return tuple(ret)
|