File: memory.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (619 lines) | stat: -rw-r--r-- 24,040 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
import collections
import contextlib
import warnings
from typing import Any, Dict, Union, Tuple

import torch
from . import is_initialized, _get_device_index, _lazy_init

from ._memory_viz import segments as _segments, memory as _memory

from torch.types import Device
from torch import _C

__all__ = ["caching_allocator_alloc", "caching_allocator_delete", "set_per_process_memory_fraction",
           "empty_cache", "memory_stats", "memory_stats_as_nested_dict", "reset_accumulated_memory_stats",
           "reset_peak_memory_stats", "reset_max_memory_allocated", "reset_max_memory_cached",
           "memory_allocated", "max_memory_allocated", "memory_reserved", "max_memory_reserved",
           "memory_cached", "max_memory_cached", "memory_snapshot", "memory_summary", "list_gpu_processes",
           "mem_get_info"]

def _host_allocator():
    _lazy_init()
    return torch._C._cuda_cudaHostAllocator()


@contextlib.contextmanager
def _free_mutex():
    torch._C._cuda_lock_mutex()
    try:
        yield
    finally:
        torch._C._cuda_unlock_mutex()


def caching_allocator_alloc(size, device: Union[Device, int] = None, stream=None):
    r"""Performs a memory allocation using the CUDA memory allocator.

    Memory is allocated for a given device and a stream, this
    function is intended to be used for interoperability with other
    frameworks. Allocated memory is released through
    :func:`~torch.cuda.caching_allocator_delete`.

    Args:
        size (int): number of bytes to be allocated.
        device (torch.device or int, optional): selected device. If it is
            ``None`` the default CUDA device is used.
        stream (torch.cuda.Stream or int, optional): selected stream. If is ``None`` then
            the default stream for the selected device is used.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    if device is None:
        device = torch.cuda.current_device()
    device = _get_device_index(device)
    if stream is None:
        stream = torch.cuda.current_stream(device)
    if isinstance(stream, torch.cuda.streams.Stream):
        stream = stream.cuda_stream
    if not isinstance(stream, int):
        raise TypeError('Invalid type for stream argument, must be '
                        '`torch.cuda.Stream` or `int` representing a pointer '
                        'to a exisiting stream')
    with torch.cuda.device(device):
        return torch._C._cuda_cudaCachingAllocator_raw_alloc(size, stream)


def caching_allocator_delete(mem_ptr):
    r"""Deletes memory allocated using the CUDA memory allocator.

    Memory allocated with :func:`~torch.cuda.caching_allocator_alloc`.
    is freed here. The associated device and stream are tracked inside
    the allocator.

    Args:
        mem_ptr (int): memory address to be freed by the allocator.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    torch._C._cuda_cudaCachingAllocator_raw_delete(mem_ptr)


def set_per_process_memory_fraction(fraction, device: Union[Device, int] = None) -> None:
    r"""Set memory fraction for a process.
    The fraction is used to limit an caching allocator to allocated memory on a CUDA device.
    The allowed value equals the total visible memory multiplied fraction.
    If trying to allocate more than the allowed value in a process, will raise an out of
    memory error in allocator.

    Args:
        fraction(float): Range: 0~1. Allowed memory equals total_memory * fraction.
        device (torch.device or int, optional): selected device. If it is
            ``None`` the default CUDA device is used.
    .. note::
        In general, the total available free memory is less than the total capacity.
    """
    _lazy_init()
    if device is None:
        device = torch.cuda.current_device()
    device = _get_device_index(device)
    if not isinstance(fraction, float):
        raise TypeError('Invalid type for fraction argument, must be `float`')
    if fraction < 0 or fraction > 1:
        raise ValueError('Invalid fraction value: {}. '
                         'Allowed range: 0~1'.format(fraction))

    torch._C._cuda_setMemoryFraction(fraction, device)


def empty_cache() -> None:
    r"""Releases all unoccupied cached memory currently held by the caching
    allocator so that those can be used in other GPU application and visible in
    `nvidia-smi`.

    .. note::
        :func:`~torch.cuda.empty_cache` doesn't increase the amount of GPU
        memory available for PyTorch. However, it may help reduce fragmentation
        of GPU memory in certain cases. See :ref:`cuda-memory-management` for
        more details about GPU memory management.
    """
    if is_initialized():
        torch._C._cuda_emptyCache()


def memory_stats(device: Union[Device, int] = None) -> Dict[str, Any]:
    r"""Returns a dictionary of CUDA memory allocator statistics for a
    given device.

    The return value of this function is a dictionary of statistics, each of
    which is a non-negative integer.

    Core statistics:

    - ``"allocated.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of allocation requests received by the memory allocator.
    - ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of allocated memory.
    - ``"segment.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of reserved segments from ``cudaMalloc()``.
    - ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of reserved memory.
    - ``"active.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of active memory blocks.
    - ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of active memory.
    - ``"inactive_split.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of inactive, non-releasable memory blocks.
    - ``"inactive_split_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of inactive, non-releasable memory.

    For these core statistics, values are broken down as follows.

    Pool type:

    - ``all``: combined statistics across all memory pools.
    - ``large_pool``: statistics for the large allocation pool
      (as of October 2019, for size >= 1MB allocations).
    - ``small_pool``: statistics for the small allocation pool
      (as of October 2019, for size < 1MB allocations).

    Metric type:

    - ``current``: current value of this metric.
    - ``peak``: maximum value of this metric.
    - ``allocated``: historical total increase in this metric.
    - ``freed``: historical total decrease in this metric.

    In addition to the core statistics, we also provide some simple event
    counters:

    - ``"num_alloc_retries"``: number of failed ``cudaMalloc`` calls that
      result in a cache flush and retry.
    - ``"num_ooms"``: number of out-of-memory errors thrown.

    The caching allocator can be configured via ENV to not split blocks larger than a
    defined size (see Memory Management section of the Cuda Semantics documentation).
    This helps avoid memory framentation but may have a performance
    penalty. Additional outputs to assist with tuning and evaluating impact:

    - ``"max_split_size"``: blocks above this size will not be split.
    - ``"oversize_allocations.{current,peak,allocated,freed}"``:
      number of over-size allocation requests received by the memory allocator.
    - ``"oversize_segments.{current,peak,allocated,freed}"``:
      number of over-size reserved segments from ``cudaMalloc()``.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistics for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    result = []

    def _recurse_add_to_result(prefix, obj):
        if isinstance(obj, dict):
            if len(prefix) > 0:
                prefix += "."
            for k, v in obj.items():
                _recurse_add_to_result(prefix + k, v)
        else:
            result.append((prefix, obj))

    stats = memory_stats_as_nested_dict(device=device)
    _recurse_add_to_result("", stats)
    result.sort()

    return collections.OrderedDict(result)


def memory_stats_as_nested_dict(device: Union[Device, int] = None) -> Dict[str, Any]:
    r"""Returns the result of :func:`~torch.cuda.memory_stats` as a nested dictionary."""
    if not is_initialized():
        return {}
    device = _get_device_index(device, optional=True)
    return torch._C._cuda_memoryStats(device)


def reset_accumulated_memory_stats(device: Union[Device, int] = None) -> None:
    r"""Resets the "accumulated" (historical) stats tracked by the CUDA memory allocator.

    See :func:`~torch.cuda.memory_stats` for details. Accumulated stats correspond to
    the `"allocated"` and `"freed"` keys in each individual stat dict, as well as
    `"num_alloc_retries"` and `"num_ooms"`.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    device = _get_device_index(device, optional=True)
    return torch._C._cuda_resetAccumulatedMemoryStats(device)


def reset_peak_memory_stats(device: Union[Device, int] = None) -> None:
    r"""Resets the "peak" stats tracked by the CUDA memory allocator.

    See :func:`~torch.cuda.memory_stats` for details. Peak stats correspond to the
    `"peak"` key in each individual stat dict.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    device = _get_device_index(device, optional=True)
    return torch._C._cuda_resetPeakMemoryStats(device)


def reset_max_memory_allocated(device: Union[Device, int] = None) -> None:
    r"""Resets the starting point in tracking maximum GPU memory occupied by
    tensors for a given device.

    See :func:`~torch.cuda.max_memory_allocated` for details.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. warning::
        This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
        /all/ peak memory stats.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    warnings.warn(
        "torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, "
        "which resets /all/ peak memory stats.",
        FutureWarning)
    return reset_peak_memory_stats(device=device)


def reset_max_memory_cached(device: Union[Device, int] = None) -> None:
    r"""Resets the starting point in tracking maximum GPU memory managed by the
    caching allocator for a given device.

    See :func:`~torch.cuda.max_memory_cached` for details.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. warning::
        This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
        /all/ peak memory stats.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    warnings.warn(
        "torch.cuda.reset_max_memory_cached now calls torch.cuda.reset_peak_memory_stats, "
        "which resets /all/ peak memory stats.",
        FutureWarning)
    return reset_peak_memory_stats(device=device)


def memory_allocated(device: Union[Device, int] = None) -> int:
    r"""Returns the current GPU memory occupied by tensors in bytes for a given
    device.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        This is likely less than the amount shown in `nvidia-smi` since some
        unused memory can be held by the caching allocator and some context
        needs to be created on GPU. See :ref:`cuda-memory-management` for more
        details about GPU memory management.
    """
    return memory_stats(device=device).get("allocated_bytes.all.current", 0)


def max_memory_allocated(device: Union[Device, int] = None) -> int:
    r"""Returns the maximum GPU memory occupied by tensors in bytes for a given
    device.

    By default, this returns the peak allocated memory since the beginning of
    this program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to
    reset the starting point in tracking this metric. For example, these two
    functions can measure the peak allocated memory usage of each iteration in a
    training loop.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return memory_stats(device=device).get("allocated_bytes.all.peak", 0)


def memory_reserved(device: Union[Device, int] = None) -> int:
    r"""Returns the current GPU memory managed by the caching allocator in bytes
    for a given device.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return memory_stats(device=device).get("reserved_bytes.all.current", 0)


def max_memory_reserved(device: Union[Device, int] = None) -> int:
    r"""Returns the maximum GPU memory managed by the caching allocator in bytes
    for a given device.

    By default, this returns the peak cached memory since the beginning of this
    program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to reset
    the starting point in tracking this metric. For example, these two functions
    can measure the peak cached memory amount of each iteration in a training
    loop.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return memory_stats(device=device).get("reserved_bytes.all.peak", 0)


def memory_cached(device: Union[Device, int] = None) -> int:
    r"""Deprecated; see :func:`~torch.cuda.memory_reserved`."""
    warnings.warn(
        "torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved",
        FutureWarning)
    return memory_reserved(device=device)


def max_memory_cached(device: Union[Device, int] = None) -> int:
    r"""Deprecated; see :func:`~torch.cuda.max_memory_reserved`."""
    warnings.warn(
        "torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved",
        FutureWarning)
    return max_memory_reserved(device=device)


def memory_snapshot():
    r"""Returns a snapshot of the CUDA memory allocator state across all devices.

    Interpreting the output of this function requires familiarity with the
    memory allocator internals.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return torch._C._cuda_memorySnapshot()


def memory_summary(device: Union[Device, int] = None, abbreviated: bool = False) -> str:
    r"""Returns a human-readable printout of the current memory allocator
    statistics for a given device.

    This can be useful to display periodically during training, or when
    handling out-of-memory exceptions.

    Args:
        device (torch.device or int, optional): selected device. Returns
            printout for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).
        abbreviated (bool, optional): whether to return an abbreviated summary
            (default: False).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    device = _get_device_index(device, optional=True)
    stats = memory_stats(device=device)

    def _format_size(sz, pref_sz):
        prefixes = ["B ", "KB", "MB", "GB", "TB", "PB"]
        prefix = prefixes[0]
        for new_prefix in prefixes[1:]:
            if pref_sz < 768 * 1024:
                break
            prefix = new_prefix
            sz //= 1024
            pref_sz /= 1024
        return "{:7d} {}".format(sz, prefix)

    def _format_count(cnt, pref_cnt):
        prefixes = [" ", "K", "M"]
        prefix = prefixes[0]
        for new_prefix in prefixes[1:]:
            if pref_cnt < 750 * 1000:
                break
            prefix = new_prefix
            cnt //= 1000
            pref_cnt /= 1000
        return "{:7d} {} ".format(cnt, prefix)

    metrics_to_display = [
        ("allocated_bytes", "Allocated memory", _format_size),
        ("active_bytes", "Active memory", _format_size),
        ("reserved_bytes", "GPU reserved memory", _format_size),
        ("inactive_split_bytes", "Non-releasable memory", _format_size),
        ("allocation", "Allocations", _format_count),
        ("active", "Active allocs", _format_count),
        ("segment", "GPU reserved segments", _format_count),
        ("inactive_split", "Non-releasable allocs", _format_count),
    ]

    lines = []
    lines.append("=" * 75)
    lines.append(" {_:16} PyTorch CUDA memory summary, device ID {device:<17d} ")
    lines.append("-" * 75)
    lines.append("  {_:9} CUDA OOMs: {num_ooms:<12d} | {_:6} cudaMalloc retries: {num_alloc_retries:<8d}  ")
    lines.append("=" * 75)
    lines.append("        Metric         | Cur Usage  | Peak Usage | Tot Alloc  | Tot Freed  ")

    for metric_key, metric_name, formatter in metrics_to_display:
        lines.append("-" * 75)
        submetrics = [("all", metric_name)]
        if not abbreviated:
            submetrics.append(("large_pool", "      from large pool"))
            submetrics.append(("small_pool", "      from small pool"))

        current_prefval, peak_prefval, allocated_prefval, freed_prefval = None, None, None, None

        for submetric_key, submetric_name in submetrics:
            prefix = metric_key + "." + submetric_key + "."

            current = stats[prefix + "current"]
            peak = stats[prefix + "peak"]
            allocated = stats[prefix + "allocated"]
            freed = stats[prefix + "freed"]

            if current_prefval is None:
                current_prefval = current
                peak_prefval = peak
                allocated_prefval = allocated
                freed_prefval = freed

            lines.append(" {:<21} | {} | {} | {} | {} ".format(
                submetric_name,
                formatter(current, current_prefval),
                formatter(peak, peak_prefval),
                formatter(allocated, allocated_prefval),
                formatter(freed, freed_prefval)),
            )

    metrics_to_display = [
        ("oversize_allocations", "Oversize allocations", _format_count),
        ("oversize_segments", "Oversize GPU segments", _format_count),
    ]

    for metric_key, metric_name, formatter in metrics_to_display:
        lines.append("-" * 75)

        prefix = metric_key + "."

        current = stats[prefix + "current"]
        peak = stats[prefix + "peak"]
        allocated = stats[prefix + "allocated"]
        freed = stats[prefix + "freed"]

        lines.append(" {:<21} | {} | {} | {} | {} ".format(
            metric_name,
            formatter(current, current),
            formatter(peak, peak),
            formatter(allocated, allocated),
            formatter(freed, freed)),
        )

    lines.append("=" * 75)

    fmt_dict = {"_": "", "device": device}
    for k, v in stats.items():
        fmt_dict[k.replace(".", "-")] = v
    return "|" + "|\n|".join(lines).format(**fmt_dict) + "|\n"


def list_gpu_processes(device: Union[Device, int] = None) -> str:
    r"""Returns a human-readable printout of the running processes
    and their GPU memory use for a given device.

    This can be useful to display periodically during training, or when
    handling out-of-memory exceptions.

    Args:
        device (torch.device or int, optional): selected device. Returns
            printout for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).
    """

    try:
        import pynvml  # type: ignore[import]
    except ModuleNotFoundError:
        return("pynvml module not found, please install pynvml")
    from pynvml import NVMLError_DriverNotLoaded
    try:
        pynvml.nvmlInit()
    except NVMLError_DriverNotLoaded:
        return ("cuda driver can't be loaded, is cuda enabled?")
    device = _get_device_index(device, optional=True)
    handle = pynvml.nvmlDeviceGetHandleByIndex(device)
    procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
    lines = []
    lines.append(f"GPU:{device}")
    if len(procs) == 0:
        lines.append("no processes are running")
    for p in procs:
        mem = p.usedGpuMemory / (1024 * 1024)
        lines.append(f"process {p.pid:>10d} uses {mem:>12.3f} MB GPU memory")
    return "\n".join(lines)

def mem_get_info(device: Union[Device, int] = None) -> Tuple[int, int]:
    r"""Returns the global free and total GPU memory occupied for a given
    device using cudaMemGetInfo.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more
        details about GPU memory management.
    """
    if device is None:
        device = torch.cuda.current_device()
    device = _get_device_index(device)
    return torch.cuda.cudart().cudaMemGetInfo(device)

def _record_memory_history(enabled: bool, device: Union[Device, int] = None):
    with torch.cuda.device(device):
        _C._cuda_recordMemoryHistory(enabled)

def _snapshot(device: Union[Device, int] = None):
    with torch.cuda.device(device):
        return _C._cuda_memorySnapshot()

def _save_segment_usage(filename='output.svg', snapshot=None):
    if snapshot is None:
        snapshot = memory_snapshot()
    with open(filename, 'w') as f:
        f.write(_segments(snapshot))

def _save_memory_usage(filename='output.svg', snapshot=None):
    if snapshot is None:
        snapshot = memory_snapshot()
    with open(filename, 'w') as f:
        f.write(_memory(snapshot))

def _set_allocator_settings(env: str):
    return torch._C._cuda_cudaCachingAllocator_set_allocator_settings(env)