File: _utils.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (26 lines) | stat: -rw-r--r-- 1,020 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch
from torch.distributed._shard.metadata import ShardMetadata
from typing import Sequence

def narrow_tensor_by_index(tensor: torch.Tensor, offsets: Sequence[int], sizes: Sequence[int]) -> torch.Tensor:
    """
    Narrow the tensor according to ``offsets`` and ``sizes``.
    """
    narrowed_tensor = tensor
    for idx, (offset, size) in enumerate(zip(offsets, sizes)):
        if size < tensor.size(idx):
            # Reshape to get shard for this rank and we don't want autograd
            # recording here for the narrow op and 'local_shard' should be a
            # leaf variable in the autograd graph.
            narrowed_tensor = narrowed_tensor.narrow(
                idx,
                offset,
                size
            )
    return narrowed_tensor

def narrow_tensor(tensor: torch.Tensor, metadata: ShardMetadata) -> torch.Tensor:
    """
    Narrow the tensor according to the metadata
    """
    return narrow_tensor_by_index(tensor, metadata.shard_offsets, metadata.shard_sizes)