1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
from typing import List, Any
import torch
from torch.distributed._shard.metadata import ShardMetadata
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._shard.sharded_tensor.metadata import TensorProperties
from torch.distributed._shard.sharded_tensor.shard import Shard
from torch.distributed._shard.sharding_spec._internals import (
_check_shard_metadata_pair_overlap,
)
from .planner import (
LoadItemType,
SavePlan,
ReadItem,
WriteItem,
WriteItemType,
TensorWriteData,
)
from .metadata import (
BytesStorageMetadata,
ChunkStorageMetadata,
TensorStorageMetadata,
MetadataIndex,
STATE_DICT_TYPE,
STORAGE_TYPES
)
from .resharding import (
_shards_get_overlap_region_wrt_saved_tensor
)
def _create_shard_metadata(size: torch.Size) -> ShardMetadata:
return ShardMetadata(
shard_offsets=[0] * len(size),
shard_sizes=list(size),
)
def _create_shard_from_tensor(tensor: torch.Tensor) -> Shard:
return Shard(
tensor=tensor,
metadata=_create_shard_metadata(tensor.size())
)
def _chunk_for_shard(shard_md: ShardMetadata) -> ChunkStorageMetadata:
return ChunkStorageMetadata(
offsets=torch.Size(shard_md.shard_offsets),
sizes=torch.Size(shard_md.shard_sizes)
)
def _sharded_tensor_metadata(sharded_tensor: ShardedTensor, shard_md: ShardMetadata) -> TensorWriteData:
return TensorWriteData(
chunk=_chunk_for_shard(shard_md),
properties=sharded_tensor.metadata().tensor_properties,
size=sharded_tensor.metadata().size,
)
def _create_write_item_for_shard(fqn: str, sharded_tensor: ShardedTensor, shard_md: ShardMetadata) -> WriteItem:
offsets = torch.Size(shard_md.shard_offsets)
return WriteItem(
index=MetadataIndex(fqn, offsets),
type=WriteItemType.SHARD,
tensor_data=_sharded_tensor_metadata(sharded_tensor, shard_md),
)
def _create_write_item_for_tensor(fqn: str, tensor: torch.Tensor) -> WriteItem:
offsets = torch.Size([0] * len(tensor.size()))
return WriteItem(
index=MetadataIndex(fqn, offsets),
type=WriteItemType.TENSOR,
tensor_data=TensorWriteData(
chunk=ChunkStorageMetadata(
offsets=offsets,
sizes=tensor.size()
),
properties=TensorProperties.create_from_tensor(tensor),
size=tensor.size(),
)
)
def _create_write_item_for_bytesio(fqn: str, bytes: Any):
return WriteItem(
index=MetadataIndex(fqn),
type=WriteItemType.BYTE_IO,
)
def _create_read_item_for_byteio(dest_index, dest_offset, storage_index, storage_offset, length):
return ReadItem(
type=LoadItemType.BYTE_IO,
dest_index=dest_index,
dest_offsets=torch.Size((dest_offset,)),
storage_index=storage_index,
storage_offsets=torch.Size((storage_offset,)),
lengths=torch.Size((length,)),
)
def _create_read_item_for_tensor(dest_index, dest_offsets, storage_index, storage_offsets, lengths):
return ReadItem(
type=LoadItemType.TENSOR,
dest_index=dest_index,
dest_offsets=torch.Size(dest_offsets),
storage_index=storage_index,
storage_offsets=torch.Size(storage_offsets),
lengths=torch.Size(lengths),
)
def _create_sharded_read_items(
fqn: str,
checkpoint_md: TensorStorageMetadata,
local_shards: List[Shard],
) -> List[ReadItem]:
read_items = []
# this is a naive quadratic algo that can be optimized later
for idx, shard in enumerate(local_shards):
for storage_idx, storage_md in enumerate(checkpoint_md.chunks):
shard_md_from_storage = ShardMetadata(
shard_sizes=list(storage_md.sizes),
shard_offsets=list(storage_md.offsets),
)
if not _check_shard_metadata_pair_overlap(
shard.metadata, shard_md_from_storage
):
continue
storage_offsets = []
dest_offsets = []
lengths = []
for (
dim,
offset_for_saved_tensor,
offset_for_current_tensor,
length,
) in _shards_get_overlap_region_wrt_saved_tensor(
saved_shard=shard_md_from_storage, current_shard=shard.metadata
):
storage_offsets.append(offset_for_saved_tensor)
dest_offsets.append(offset_for_current_tensor)
lengths.append(length)
read_items.append(
_create_read_item_for_tensor(
dest_index=MetadataIndex(fqn, shard.metadata.shard_offsets, idx),
dest_offsets=dest_offsets,
storage_index=MetadataIndex(fqn, storage_md.offsets, storage_idx),
storage_offsets=storage_offsets,
lengths=lengths,
)
)
return read_items
def _create_default_metadata_only_plan(state_dict: STATE_DICT_TYPE) -> SavePlan:
requests = []
for fqn, obj in state_dict.items():
if isinstance(obj, ShardedTensor):
for shard_md in obj.metadata().shards_metadata:
requests.append(_create_write_item_for_shard(fqn, obj, shard_md))
elif isinstance(obj, torch.Tensor):
requests.append(_create_write_item_for_tensor(fqn, obj))
else:
requests.append(_create_write_item_for_bytesio(fqn, obj))
return SavePlan(requests)
def _create_write_items(fqn: str, object: Any) -> List[WriteItem]:
if isinstance(object, ShardedTensor):
return [_create_write_item_for_shard(fqn, object, shard.metadata) for shard in object.local_shards()]
elif isinstance(object, torch.Tensor):
return [_create_write_item_for_tensor(fqn, object)]
else:
return [_create_write_item_for_bytesio(fqn, object)]
def _create_read_items(fqn: str, md: STORAGE_TYPES, obj: Any) -> List[ReadItem]:
if isinstance(md, BytesStorageMetadata):
return [_create_read_item_for_byteio(
dest_index=MetadataIndex(fqn),
dest_offset=0,
storage_index=MetadataIndex(fqn),
storage_offset=0,
length=0
)]
elif isinstance(obj, ShardedTensor):
local_shards = obj.local_shards()
elif isinstance(obj, torch.Tensor):
local_shards = [_create_shard_from_tensor(obj)]
else:
raise ValueError(
f"Invalid checkpoint metadata for {fqn}, " +
f"expected BytesStorageMetadata but found {type(md)}"
)
return _create_sharded_read_items(
fqn,
md,
local_shards
)
|