File: planner_helpers.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (199 lines) | stat: -rw-r--r-- 6,773 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from typing import List, Any

import torch

from torch.distributed._shard.metadata import ShardMetadata
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._shard.sharded_tensor.metadata import TensorProperties
from torch.distributed._shard.sharded_tensor.shard import Shard

from torch.distributed._shard.sharding_spec._internals import (
    _check_shard_metadata_pair_overlap,
)

from .planner import (
    LoadItemType,
    SavePlan,
    ReadItem,
    WriteItem,
    WriteItemType,
    TensorWriteData,
)

from .metadata import (
    BytesStorageMetadata,
    ChunkStorageMetadata,
    TensorStorageMetadata,
    MetadataIndex,
    STATE_DICT_TYPE,
    STORAGE_TYPES
)

from .resharding import (
    _shards_get_overlap_region_wrt_saved_tensor
)

def _create_shard_metadata(size: torch.Size) -> ShardMetadata:
    return ShardMetadata(
        shard_offsets=[0] * len(size),
        shard_sizes=list(size),
    )

def _create_shard_from_tensor(tensor: torch.Tensor) -> Shard:
    return Shard(
        tensor=tensor,
        metadata=_create_shard_metadata(tensor.size())
    )

def _chunk_for_shard(shard_md: ShardMetadata) -> ChunkStorageMetadata:
    return ChunkStorageMetadata(
        offsets=torch.Size(shard_md.shard_offsets),
        sizes=torch.Size(shard_md.shard_sizes)
    )

def _sharded_tensor_metadata(sharded_tensor: ShardedTensor, shard_md: ShardMetadata) -> TensorWriteData:
    return TensorWriteData(
        chunk=_chunk_for_shard(shard_md),
        properties=sharded_tensor.metadata().tensor_properties,
        size=sharded_tensor.metadata().size,
    )

def _create_write_item_for_shard(fqn: str, sharded_tensor: ShardedTensor, shard_md: ShardMetadata) -> WriteItem:
    offsets = torch.Size(shard_md.shard_offsets)
    return WriteItem(
        index=MetadataIndex(fqn, offsets),
        type=WriteItemType.SHARD,
        tensor_data=_sharded_tensor_metadata(sharded_tensor, shard_md),
    )

def _create_write_item_for_tensor(fqn: str, tensor: torch.Tensor) -> WriteItem:
    offsets = torch.Size([0] * len(tensor.size()))
    return WriteItem(
        index=MetadataIndex(fqn, offsets),
        type=WriteItemType.TENSOR,
        tensor_data=TensorWriteData(
            chunk=ChunkStorageMetadata(
                offsets=offsets,
                sizes=tensor.size()
            ),
            properties=TensorProperties.create_from_tensor(tensor),
            size=tensor.size(),
        )
    )

def _create_write_item_for_bytesio(fqn: str, bytes: Any):
    return WriteItem(
        index=MetadataIndex(fqn),
        type=WriteItemType.BYTE_IO,
    )

def _create_read_item_for_byteio(dest_index, dest_offset, storage_index, storage_offset, length):
    return ReadItem(
        type=LoadItemType.BYTE_IO,
        dest_index=dest_index,
        dest_offsets=torch.Size((dest_offset,)),
        storage_index=storage_index,
        storage_offsets=torch.Size((storage_offset,)),
        lengths=torch.Size((length,)),
    )

def _create_read_item_for_tensor(dest_index, dest_offsets, storage_index, storage_offsets, lengths):
    return ReadItem(
        type=LoadItemType.TENSOR,
        dest_index=dest_index,
        dest_offsets=torch.Size(dest_offsets),
        storage_index=storage_index,
        storage_offsets=torch.Size(storage_offsets),
        lengths=torch.Size(lengths),
    )

def _create_sharded_read_items(
    fqn: str,
    checkpoint_md: TensorStorageMetadata,
    local_shards: List[Shard],
) -> List[ReadItem]:

    read_items = []
    # this is a naive quadratic algo that can be optimized later
    for idx, shard in enumerate(local_shards):
        for storage_idx, storage_md in enumerate(checkpoint_md.chunks):
            shard_md_from_storage = ShardMetadata(
                shard_sizes=list(storage_md.sizes),
                shard_offsets=list(storage_md.offsets),
            )

            if not _check_shard_metadata_pair_overlap(
                shard.metadata, shard_md_from_storage
            ):
                continue

            storage_offsets = []
            dest_offsets = []
            lengths = []
            for (
                dim,
                offset_for_saved_tensor,
                offset_for_current_tensor,
                length,
            ) in _shards_get_overlap_region_wrt_saved_tensor(
                saved_shard=shard_md_from_storage, current_shard=shard.metadata
            ):
                storage_offsets.append(offset_for_saved_tensor)
                dest_offsets.append(offset_for_current_tensor)
                lengths.append(length)

            read_items.append(
                _create_read_item_for_tensor(
                    dest_index=MetadataIndex(fqn, shard.metadata.shard_offsets, idx),
                    dest_offsets=dest_offsets,
                    storage_index=MetadataIndex(fqn, storage_md.offsets, storage_idx),
                    storage_offsets=storage_offsets,
                    lengths=lengths,
                )
            )
    return read_items

def _create_default_metadata_only_plan(state_dict: STATE_DICT_TYPE) -> SavePlan:
    requests = []
    for fqn, obj in state_dict.items():
        if isinstance(obj, ShardedTensor):
            for shard_md in obj.metadata().shards_metadata:
                requests.append(_create_write_item_for_shard(fqn, obj, shard_md))
        elif isinstance(obj, torch.Tensor):
            requests.append(_create_write_item_for_tensor(fqn, obj))
        else:
            requests.append(_create_write_item_for_bytesio(fqn, obj))
    return SavePlan(requests)

def _create_write_items(fqn: str, object: Any) -> List[WriteItem]:
    if isinstance(object, ShardedTensor):
        return [_create_write_item_for_shard(fqn, object, shard.metadata) for shard in object.local_shards()]
    elif isinstance(object, torch.Tensor):
        return [_create_write_item_for_tensor(fqn, object)]
    else:
        return [_create_write_item_for_bytesio(fqn, object)]

def _create_read_items(fqn: str, md: STORAGE_TYPES, obj: Any) -> List[ReadItem]:
    if isinstance(md, BytesStorageMetadata):
        return [_create_read_item_for_byteio(
            dest_index=MetadataIndex(fqn),
            dest_offset=0,
            storage_index=MetadataIndex(fqn),
            storage_offset=0,
            length=0
        )]
    elif isinstance(obj, ShardedTensor):
        local_shards = obj.local_shards()
    elif isinstance(obj, torch.Tensor):
        local_shards = [_create_shard_from_tensor(obj)]
    else:
        raise ValueError(
            f"Invalid checkpoint metadata for {fqn}, " +
            f"expected BytesStorageMetadata but found {type(md)}"
        )

    return _create_sharded_read_items(
        fqn,
        md,
        local_shards
    )