1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
|
from __future__ import annotations # type: ignore[attr-defined]
from dataclasses import dataclass
from typing import (
Callable,
Dict,
List,
Optional,
Sequence,
Tuple,
cast,
)
import copy
from functools import reduce
import weakref
import threading
import torch
import torch.distributed as dist
from torch.distributed import rpc
from torch.distributed import distributed_c10d
from torch.distributed._shard.metadata import ShardMetadata
import torch.distributed._shard.sharding_spec as shard_spec
from torch.distributed._shard.sharding_spec.api import (
_dispatch_custom_op,
_has_custom_op,
)
from torch.distributed._shard.sharding_spec._internals import (
check_tensor,
validate_non_overlapping_shards_metadata,
)
from .metadata import TensorProperties, ShardedTensorMetadata
from .shard import Shard
from .reshard import reshuffle_local_shard, reshard_local_shard
from .utils import (
_flatten_tensor_size,
_parse_and_validate_remote_device,
_validate_output_tensor_for_gather,
build_metadata_from_local_shards,
build_global_metadata
)
from torch.distributed.remote_device import _remote_device
from torch.utils._pytree import tree_map
# Tracking for sharded tensor objects.
_sharded_tensor_lock = threading.Lock()
_sharded_tensor_current_id = 0
_sharded_tensor_map: Dict[int, 'weakref.ReferenceType[ShardedTensor]'] = {}
# Default sharded ops
_SHARDED_OPS: Dict[Callable, Callable] = {}
# Customized user ops
_CUSTOM_SHARDED_OPS: Dict[Callable, Callable] = {}
def _register_remote_shards(sharded_tensor_id: int, rrefs: List[rpc.RRef[Shard]], rpc_rank: int):
with _sharded_tensor_lock:
if sharded_tensor_id not in _sharded_tensor_map:
raise RuntimeError(
f'Could not find sharded_tensor_id: {sharded_tensor_id} in map: {_sharded_tensor_map.keys()}')
sharded_tensor = _sharded_tensor_map[sharded_tensor_id]()
if sharded_tensor is None:
raise RuntimeError('ShardedTensor weakref has been deallocated')
else:
sharded_tensor._register_remote_shards(rrefs, rpc_rank)
class ShardedTensorBase(torch.Tensor):
_sharding_spec: shard_spec.ShardingSpec
_metadata: ShardedTensorMetadata
_local_shards: List[Shard]
def __new__(cls, sharding_spec: shard_spec.ShardingSpec, *size, **kwargs):
# Use __new__ to construct a wrapper tensor, for recording tensor
# properties and logging purposes.
torch._C._log_api_usage_once("torch.distributed._shard.sharded_tensor")
# check sharding spec and build sharded tensor metadata
if not isinstance(sharding_spec, shard_spec.ShardingSpec):
raise ValueError(f"Expecting ShardingSpec but got: {type(sharding_spec)}")
sizes = _flatten_tensor_size(size)
dtype = kwargs["dtype"]
layout = kwargs["layout"]
pin_memory = kwargs["pin_memory"]
requires_grad = kwargs["requires_grad"]
if dtype is None:
dtype = torch.get_default_dtype()
tensor_properties = TensorProperties(
dtype, layout, requires_grad, pin_memory=pin_memory
)
sharded_tensor_metadata = sharding_spec.build_metadata(
sizes, tensor_properties=tensor_properties
)
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls,
sizes,
dtype=dtype,
layout=layout,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
# set sharding spec
r._sharding_spec = sharding_spec
# set metadata
r._metadata = sharded_tensor_metadata
# set local shards
r._local_shards = []
return r
def metadata(self) -> ShardedTensorMetadata:
"""
Returns a :class:`ShardedTensorMetadata` object corresponding to the
metadata for the entire tensor.
"""
return self._metadata
def local_shards(self) -> List[Shard]:
"""
Returns a list of :class:`Shard' corresponding to the
local shards for this rank. Returns an empty list if the current rank
does not host any shards for this Tensor.
"""
return self._local_shards
@classmethod
def _init_from_local_shards_and_global_metadata(
cls,
local_shards: List[Shard],
sharded_tensor_metadata: ShardedTensorMetadata,
sharding_spec=None,
) -> "ShardedTensor":
"""
Initialize a ShardedTensorBase with local shards and a global
ShardedTensorMetadata built on each rank.
Warning: This API is experimental and subject to change. It does
not do cross rank validations, and fully rely on the user
for the correctness of sharded_tensor_metadata on each rank
"""
shards_metadata = sharded_tensor_metadata.shards_metadata
tensor_properties = sharded_tensor_metadata.tensor_properties
if len(shards_metadata) == 0:
raise ValueError("shards_metadata must not be empty!")
if tensor_properties.layout != torch.strided:
raise ValueError("Only torch.strided layout is currently supported")
if sharding_spec is None:
spec = shard_spec._infer_sharding_spec_from_shards_metadata(shards_metadata)
else:
spec = sharding_spec
sharded_tensor_base = ShardedTensor.__new__(
ShardedTensor,
spec,
sharded_tensor_metadata.size,
dtype=tensor_properties.dtype,
layout=tensor_properties.layout,
pin_memory=tensor_properties.pin_memory,
requires_grad=tensor_properties.requires_grad,
)
def _raise_if_mismatch(expected, actual, prop_name, rank, is_property=False):
tensor_property_or_metadata = (
"tensor property" if is_property else "local ShardMetadata"
)
if expected != actual:
raise ValueError(
f"Local shards' tensor {prop_name} property is incompatible with "
f"{tensor_property_or_metadata} on rank {rank}: "
f"{tensor_property_or_metadata} {prop_name}={expected}, "
f"local shard tensor {prop_name}={actual}."
)
for shard in local_shards:
shard_meta = shard.metadata
local_shard_tensor = shard.tensor
placement = shard_meta.placement
assert placement is not None, "Must specify placement for `Shard`!"
rank = placement.rank()
local_device = placement.device()
_raise_if_mismatch(
tensor_properties.layout,
local_shard_tensor.layout,
"layout",
rank,
True,
)
if not local_shard_tensor.is_contiguous():
raise ValueError(
"Only torch.contiguous_format memory_format is currently supported"
)
_raise_if_mismatch(
shard_meta.shard_sizes,
list(local_shard_tensor.size()),
"size",
rank,
)
_raise_if_mismatch(
tensor_properties.pin_memory,
local_shard_tensor.is_pinned(),
"pin_memory",
rank,
True,
)
_raise_if_mismatch(local_device, local_shard_tensor.device, "device", rank)
_raise_if_mismatch(
tensor_properties.dtype,
local_shard_tensor.dtype,
"dtype",
rank,
True,
)
_raise_if_mismatch(
tensor_properties.requires_grad,
local_shard_tensor.requires_grad,
"requires_grad",
rank,
True,
)
# check if shards_metadata have overlap shards
validate_non_overlapping_shards_metadata(shards_metadata)
# check if the shards_metadata is compatible with overall size of the sharded tensor.
check_tensor(shards_metadata, list(sharded_tensor_metadata.size))
# done validation, add local_shards
sharded_tensor_base._local_shards = local_shards
return sharded_tensor_base
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise RuntimeError(
f"A {cls.__name__} object is being used from c++ while calling {func.__module__}.{func.__name__} "
"but the there is no custom __torch_dispatch__ implementation for it."
)
class ShardedTensor(ShardedTensorBase):
"""
ShardedTensor is an torch.Tensor subclass to represent Tensors that are sharded
across multiple devices and multiple processes.
ShardedTensor is initialized in an SPMD like fashion where each rank
initializes the ShardedTensor. The ShardedTensor object on each rank
then only stores the local shard for the Tensor and provides global
metadata for all the shards.
ShardedTensor doesn't provide any Tensor like operations but is a wrapper
providing the Tensor representing the local shard and the global metadata.
Using these, users can build their custom distributed._sharded computations
on top of this primitive. The local shards are all initialized using the
create_op specified by tensor_init_params.create_op, e.g., torch.ones, or
torch.empty
Args:
sharding_spec (:class:`torch.distributed._shard.sharding_spec.ShardingSpec`): The specification
describing how to shard the Tensor.
size (int...): a sequence of integers defining the shape of the output
tensor. Can be a variable number of arguments or a collection like a list or tuple.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
Default: ``torch.strided``.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
returned Tensor. Default: ``torch.contiguous_format``.
init_rrefs (bool, optional): Whether or not to initialize
:class:`torch.distributed.rpc.RRef`s pointing to remote shards.
Need to initialize the RPC Framework if specified as ``True``.
Default: ``False``.
.. note:: ShardedTensor uses collectives to do various operations, i.e. it
uses all_gather to do cross rank validations. For NCCL-based process
groups, internal tensor representations of objects must be moved to the
GPU device before communication takes place. In this case, the device
used is given by ``torch.cuda.current_device()`` and it is the user's
responsibility to ensure that this is set so that each rank has an
individual GPU, via ``torch.cuda.set_device()``
"""
def __new__(cls, sharding_spec: shard_spec.ShardingSpec, *size, **kwargs):
self = super(ShardedTensor, cls).__new__(cls, sharding_spec, *size, **kwargs)
return self
def __init__(
self,
sharding_spec: shard_spec.ShardingSpec,
*size,
dtype=None,
layout=torch.strided,
requires_grad=False,
pin_memory=False,
memory_format=torch.contiguous_format,
process_group=None,
init_rrefs=False,
):
# prepare initialization, initialize fields like
# _process_group, _local_shards, etc.
self._prepare_init(process_group=process_group, init_rrefs=init_rrefs)
if layout != torch.strided:
raise ValueError('Only torch.strided layout is currently supported')
if memory_format != torch.contiguous_format:
raise ValueError('Only torch.contiguous_format memory_format is currently supported')
self._metadata.tensor_properties.memory_format = memory_format
current_rank = dist.get_rank(self._process_group)
for shard_metadata in self._metadata.shards_metadata:
rank, device = _parse_and_validate_remote_device(self._process_group, shard_metadata.placement)
if rank == current_rank:
local_tensor = _create_tensor_from_params(
shard_metadata.shard_sizes,
local_device=device,
tensor_properties=self._metadata.tensor_properties
)
self._local_shards.append(Shard(local_tensor, shard_metadata))
# do post initialization (i.e. register sharded_tensor_id, initialize_rpc)
self._post_init()
def _prepare_init(self, process_group=None, init_rrefs=False):
self._init_rrefs = init_rrefs
self._sharded_tensor_id = None
self._process_group = (
process_group
if process_group is not None
else distributed_c10d._get_default_group()
)
self._remote_shards: Dict[int, List[rpc.RRef[Shard]]] = {}
def _post_init(self):
# Initialize RPC if available.
if self._init_rrefs:
with _sharded_tensor_lock:
global _sharded_tensor_current_id, _sharded_tensor_map
self._sharded_tensor_id = _sharded_tensor_current_id
_sharded_tensor_map[self._sharded_tensor_id] = weakref.ref(self)
_sharded_tensor_current_id += 1
if not rpc._is_current_rpc_agent_set():
raise RuntimeError(
'RPC Framework needs to be initialized using'
' torch.distributed.rpc.init_rpc if init_rrefs is set to True')
self._init_rpc()
def __del__(self):
# Clean up the global map.
with _sharded_tensor_lock:
global _sharded_tensor_current_id, _sharded_tensor_map
if (
hasattr(self, "_sharded_tensor_id")
and self._sharded_tensor_id in _sharded_tensor_map
):
_sharded_tensor_map.pop(self._sharded_tensor_id) # type: ignore[call-overload]
def _init_rpc(self):
# Validate PG and RPC ranks match.
pg_rank = dist.get_rank()
rpc_rank = rpc.get_worker_info().id
if pg_rank != rpc_rank:
raise ValueError(
f'Default ProcessGroup and RPC ranks must be '
f'the same for ShardedTensor, found process group rank: '
f'{pg_rank} and RPC rank: {rpc_rank}'
)
self._remote_shards = {}
# Gather all the sharded tensor ids.
worker_infos = rpc._get_current_rpc_agent().get_worker_infos()
rank_to_name = {}
name_to_rank = {}
for worker_info in worker_infos:
rank_to_name[worker_info.id] = worker_info.name
name_to_rank[worker_info.name] = worker_info.id
all_tensor_ids = rpc.api._all_gather(self._sharded_tensor_id)
# Share the local shards to the entire world.
futs = []
rpc_rank = rpc.get_worker_info().id
for rank in range(dist.get_world_size()):
# Skip self.
if rank == dist.get_rank():
continue
if len(self.local_shards()) != 0:
rrefs: List[rpc.RRef[Shard]] = [rpc.RRef(shard) for shard in self.local_shards()]
fut = rpc.rpc_async(
rank,
_register_remote_shards,
args=(all_tensor_ids[rank_to_name[rank]], rrefs, rpc_rank))
futs.append(fut)
torch.futures.wait_all(futs)
# Barrier for all RPCs to finish on all ranks.
rpc.api._all_gather(None)
def _get_preferred_device(self) -> torch.device:
"""
Return the prefered device to be used when creating tensors for collectives.
This method takes into account the associated process group
"""
if dist.get_backend(self._process_group) == dist.Backend.NCCL:
return torch.device(torch.cuda.current_device())
return torch.device("cpu")
def gather( # type: ignore[override]
self,
dst: int = 0,
out: Optional[torch.Tensor] = None,
) -> None:
"""
Creates a full :class:`Tensor` on rank ``dst`` by gathering all shards of the
sharded tensor.
The API needs to be called on all ranks in SPMD fashion. All ranks should have
the same ``dst``. ``out`` should be a tensor of the same size as the overall
size of the sharded tensor on ``dst`` and ``None`` on all other ranks.
Args:
dst(int): The rank where full tensor is constructed.
Default: 0
out (:class `torch.Tensor`, optional): The output full tensor.
Must to be provided ONLY on ``dst`` rank.
Default: ``None``
"""
def shard_size(shard_md):
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
rank = dist.get_rank(self._process_group)
full_size = self.metadata().size
_validate_output_tensor_for_gather(rank, dst, full_size, out)
local_shards = self.local_shards()
world_size = dist.get_world_size(self._process_group)
rank_sizes = [0 for _ in range(world_size)]
max_rank_size = 0
shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
# collect sizes
for shard_md in self.metadata().shards_metadata:
shard_rank = cast(_remote_device, shard_md.placement).rank()
assert shard_rank is not None
shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
rank_sizes[shard_rank] += shard_size(shard_md)
max_rank_size = max(max_rank_size, rank_sizes[shard_rank])
gather_list: Optional[List[torch.Tensor]]
if rank == dst:
assert out is not None
gather_list = [torch.empty((max_rank_size,), device=out.device) for _ in range(world_size)]
else:
gather_list = None
with torch.no_grad():
data = torch.empty(max_rank_size, device=self._get_preferred_device())
for shard in local_shards:
src = shard.tensor.flatten()
shard_offset = shard_placement[shard.metadata][1]
data[shard_offset: shard_offset + src.numel()].copy_(src)
dist.gather(
tensor=data,
gather_list=gather_list,
dst=dst,
group=self._process_group,
)
if rank != dst:
return
# In _validate_output_tensor_for_gather, we raise if out == None and rank == dst
out = cast(torch.Tensor, out)
assert gather_list is not None
full_size = self.metadata().size
dims = len(full_size)
for shard_md in self.metadata().shards_metadata:
rank, rank_offset = shard_placement[shard_md]
tensor = gather_list[rank]
tensor = tensor[rank_offset : rank_offset + shard_size(shard_md)]
tensor = tensor.view(shard_md.shard_sizes)
out_narrow_view = out
for dim in range(dims):
out_narrow_view = out_narrow_view.narrow(
dim,
shard_md.shard_offsets[dim],
shard_md.shard_sizes[dim],
)
out_narrow_view.copy_(tensor)
def cpu(
self,
memory_format=torch.preserve_format,
process_group=None
) -> ShardedTensor:
"""
Returns a copy of this object in CPU memory.
If this ShardedTensor is already on CPU memory, then no copy is
performed and original object is returned.
.. note:: When moving a ShardedTensor from GPU to CPU, the ShardedTensor might
need to be managed by a different type of ProcessGroup(i.e. ProcessGroupGloo),
it is the user's responsiblity to explicitly pass in a new process_group that
is compatible with CPU.
"""
# TODO: make this a __torch_function__ op once ShardedTensor becomes a
# torch.Tensor subclass, see https://github.com/pytorch/pytorch/issues/75402
if memory_format != torch.preserve_format and \
memory_format != torch.contiguous_format:
raise RuntimeError("Only `torch.contiguous_format` or "
"`torch.preserve_format` is supported!")
all_on_cpu = True
for meta in self.metadata().shards_metadata:
all_on_cpu &= (meta.placement.device().type == "cpu") # type: ignore[union-attr]
# if every shard is already on CPU, return the original object
if all_on_cpu:
return self
# if not, returns a copy of this object on CPU
list_shards: List[Shard] = []
# move all local shards to cpu, and change metadata
for shard in self._local_shards:
cpu_tensor = shard.tensor.cpu(memory_format=memory_format) # type: ignore[call-arg]
metadata = copy.deepcopy(shard.metadata)
metadata.placement._device = torch.device("cpu") # type: ignore[union-attr]
list_shards.append(
Shard(cpu_tensor, metadata)
)
st_meta = copy.deepcopy(self.metadata())
for meta in st_meta.shards_metadata:
if meta.placement.device().type != "cpu": # type: ignore[union-attr]
meta.placement._device = torch.device("cpu") # type: ignore[union-attr]
pg = self._process_group if process_group is None else process_group
st_cpu = ShardedTensor._init_from_local_shards_and_global_metadata(
list_shards,
sharded_tensor_metadata=st_meta,
process_group=pg,
init_rrefs=self._init_rrefs
)
return st_cpu
def cuda(
self,
device=None,
non_blocking=False,
memory_format=torch.preserve_format,
process_group=None
) -> ShardedTensor:
"""
Returns a copy of this object in CUDA memory, if the original ShardedTensor
is on CPU, we will move the local shard to the current GPU device of each
process in a SPMD fashion.
If this ShardedTensor is already on CUDA memory and local shards on each rank are
already on current device, we still returns a new ShardedTensor object with new
metadata, but no underlying data movements are performed.
.. note:: When moving a ShardedTensor from CPU to GPU, the ShardedTensor might
need to be managed by a different type of ProcessGroup(i.e. ProcessGroupNCCL),
it is the user's responsiblity to explicitly pass in a new process_group that
is compatible with GPU.
"""
if memory_format != torch.preserve_format and \
memory_format != torch.contiguous_format:
raise RuntimeError("Only `torch.contiguous_format` or "
"`torch.preserve_format` is supported!")
if device is not None:
device = torch.device(device) if isinstance(device, str) else device
assert isinstance(device, torch.device) and device.index == torch.cuda.current_device(), \
'''Only device without device id (e.g. "cpu" or "cuda") is expected for ShardedTensor!'''
current_device = torch.device(torch.cuda.current_device())
# returns a copy of ShardedTensor on CUDA current device
list_shards: List[Shard] = []
# move all local shards to current device, and change metadata
# if local shards already on the current device, there's no
# real data movement, only the metadata are copied.
for shard in self._local_shards:
cuda_tensor = shard.tensor.cuda(
device=current_device,
non_blocking=non_blocking,
memory_format=memory_format
) # type: ignore[call-arg]
metadata = copy.deepcopy(shard.metadata)
metadata.placement._device = current_device # type: ignore[union-attr]
list_shards.append(
Shard(cuda_tensor, metadata)
)
st_meta = copy.deepcopy(self.metadata())
for meta in st_meta.shards_metadata:
if meta.placement.device().type != "cuda": # type: ignore[union-attr]
meta.placement._device = current_device # type: ignore[union-attr]
pg = self._process_group if process_group is None else process_group
# we need to use `init_from_local_shards` to communicate between ranks
# and update the sharding spec/shards metadata.
st_cuda = ShardedTensor._init_from_local_shards_and_global_metadata(
list_shards,
sharded_tensor_metadata=st_meta,
process_group=pg,
init_rrefs=self._init_rrefs
)
return st_cuda
def to(self, *args, **kwargs) -> ShardedTensor:
current_device = self._local_shards[0].tensor.device
current_dtype = self.dtype
device_to = current_device
dtype_to = current_dtype
if len(args) == 1:
if isinstance(args[0], torch.dtype):
dtype_to = args[0]
elif isinstance(args[0], torch.device):
device_to = args[0]
elif isinstance(args[0], (str, int)):
device_to = torch.device(args[0])
elif isinstance(args[0], torch.Tensor):
dtype_to = args[0].dtype
device_to = args[0].device
else:
raise RuntimeError(f"ShardedTensor.to() have wrong arguments: {args}")
elif len(args) == 2:
device_to, dtype_to = args
else:
dtype_to = kwargs.get("dtype", current_dtype)
device_to = kwargs.get("device", current_device)
device_to = torch.device(device_to) if isinstance(device_to, (str, int)) else device_to
if device_to.type == "cuda":
# if device_to set to cuda, set to current device even
# if user specify the device index.
current_idx = torch.cuda.current_device()
if device_to.index != current_idx:
import warnings
warnings.warn("ShardedTensor.to only move tensor to its current device"
"If you want to put to different device, use `reshard` instead.")
device_to = torch.device(current_idx)
copy_tensor = kwargs.get("copy", False)
non_blocking = kwargs.get("non_blocking", False)
memory_format = kwargs.get("memory_format", torch.preserve_format)
process_group = kwargs.get("process_group", None)
if not copy_tensor and dtype_to == current_dtype and device_to == current_device:
# already have correct dtype and device, return itself
return self
# returns a copy of ShardedTensor on CUDA current device
list_shards: List[Shard] = []
for shard in self._local_shards:
new_tensor = shard.tensor.to( # type: ignore[call-overload]
device=device_to,
dtype=dtype_to,
non_blocking=non_blocking,
copy=copy_tensor,
memory_format=memory_format
)
metadata = copy.deepcopy(shard.metadata)
if metadata.placement is not None:
metadata.placement._device = device_to
list_shards.append(Shard(new_tensor, metadata))
# update metadata
st_meta = copy.deepcopy(self.metadata())
st_meta.tensor_properties.dtype = dtype_to
for meta in st_meta.shards_metadata:
meta.placement._device = device_to # type: ignore[union-attr]
pg = self._process_group if process_group is None else process_group
# we need to use `init_from_local_shards` to communicate between ranks
# and update the sharding spec/shards metadata.
st_to = ShardedTensor._init_from_local_shards_and_global_metadata(
list_shards,
sharded_tensor_metadata=st_meta,
process_group=pg,
init_rrefs=self._init_rrefs
)
return st_to
@classmethod
def _init_from_local_shards(
cls,
local_shards: List[Shard],
*global_size,
process_group=None,
init_rrefs=False,
):
# STEP 1: Validate the Shardmetadatas locally
process_group = (
process_group
if process_group is not None
else distributed_c10d._get_default_group()
)
current_rank = dist.get_rank(process_group)
world_size = dist.get_world_size(process_group)
local_sharded_tensor_metadata: Optional[ShardedTensorMetadata] = None
global_tensor_size = _flatten_tensor_size(global_size)
if len(local_shards) > 0:
local_sharded_tensor_metadata = \
build_metadata_from_local_shards(local_shards, global_tensor_size, current_rank, process_group)
# STEP 2. Validate metadata across ranks, and build a global sharded tensor
# metadata by gathering local ShardedTensorMetadata
gathered_metadatas: List[Optional[ShardedTensorMetadata]] = []
if world_size > 1:
gathered_metadatas = [None for _ in range(world_size)]
dist.all_gather_object(
gathered_metadatas,
local_sharded_tensor_metadata,
group=process_group
)
else:
gathered_metadatas = [local_sharded_tensor_metadata]
global_sharded_tensor_metadata = build_global_metadata(gathered_metadatas)
tensor_properties = global_sharded_tensor_metadata.tensor_properties
# STEP 3: Validation done, create the actual ShardedTensor and populate fields
# prepare initialization
spec = shard_spec._infer_sharding_spec_from_shards_metadata(
global_sharded_tensor_metadata.shards_metadata
)
sharded_tensor = cls.__new__(cls,
spec,
global_sharded_tensor_metadata.size,
dtype=tensor_properties.dtype,
layout=tensor_properties.layout,
pin_memory=tensor_properties.pin_memory,
requires_grad=tensor_properties.requires_grad)
sharded_tensor._prepare_init(process_group=process_group, init_rrefs=init_rrefs)
# attach local_shards to the ShardedTensor created
sharded_tensor._local_shards = local_shards
# run post initialization, i.e. map registration, rpc initialization
sharded_tensor._post_init()
return sharded_tensor
@classmethod
def _init_from_local_tensor(
cls,
local_tensor: torch.Tensor,
sharding_spec: shard_spec.ShardingSpec,
*global_size: Sequence[int],
process_group: dist.ProcessGroup = None,
init_rrefs=False,
) -> "ShardedTensor":
"""
Initialize a ShardedTensor given only one local tensor, global sharded tensor
size and sharding spec on each rank.
Args:
local_tensor (Tensor): Single tensor of local shard stored in each rank.
sharding_spec (:class:`torch.distributed._shard.sharding_spec.ShardingSpec`):
The specification describing how to shard the Tensor.
global_size (Sequence[int]): Size of the sharded tensor.
process_group (ProcessGroup, optional): The process group to aggregate on.
Default: None
init_rrefs (bool, optional): Whether or not to initialize
:class:`torch.distributed.rpc.RRef`s pointing to remote shards.
Need to initialize the RPC Framework if specified as ``True``.
Default: ``False``.
Returns:
A :class:`ShardedTensor` sharded based on the given sharding_spec with local
tensor stored in the current rank.
Examples:
>>> # All tensors below are of torch.int64 type.
>>> # We have 2 process groups, 2 ranks.
>>> # xdoctest: +SKIP
>>> tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> local_tensor = torch.unsqueeze(torch.cat([tensor, tensor + 2]))
>>> local_tensor
tensor([[1, 2, 3, 4]]) # Rank 0
tensor([[3, 4, 5, 6]]) # Rank 1
>>> sharding_dim = 0
>>> sharding_spec = ChunkShardingSpec(
dim=sharding_dim,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
],
)
>>> st = ShardedTensor._init_from_local_tensor(local_tensor, sharding_spec, [2, 4])
>>> st
ShardedTensor(
ShardedTensorMetadata(
shards_metadata=[
ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1, 4], placement=rank:0/cuda:0),
ShardMetadata(shard_offsets=[1, 0], shard_sizes=[1, 4], placement=rank:1/cuda:1),
],
size=torch.Size([2, 4])
)
>>> st.local_tensor()
tensor([1, 2, 3, 4]) # Rank 0
tensor([3, 4, 5, 6]) # Rank 1
Warning: This API is experimental and subject to change. It lacks of a fully across
rank validations, and we only validate the local shard on the current rank.
We fully rely on the user to ensure local tensor is sharded based on the
sharding spec.
"""
if not local_tensor.is_contiguous():
raise ValueError('local_tensor is not a contiguous Tensor.')
global_tensor_size = _flatten_tensor_size(global_size)
tensor_properties = TensorProperties(
dtype=local_tensor.dtype,
layout=local_tensor.layout,
requires_grad=local_tensor.requires_grad,
memory_format=torch.contiguous_format,
pin_memory=local_tensor.is_pinned())
sharded_tensor_metadata = sharding_spec.build_metadata(
global_tensor_size,
tensor_properties
)
process_group = (
process_group
if process_group is not None
else distributed_c10d._get_default_group()
)
current_rank = dist.get_rank(process_group)
local_shards: List[Shard] = []
for shard_metadata in sharded_tensor_metadata.shards_metadata:
rank, device = _parse_and_validate_remote_device(process_group, shard_metadata.placement)
if rank == current_rank:
local_shards.append(Shard(local_tensor, shard_metadata))
# TODO: figure out what the API should behave when some rank have no shard
# see https://github.com/pytorch/pytorch/issues/7313
return ShardedTensor._init_from_local_shards_and_global_metadata(
local_shards,
sharded_tensor_metadata,
process_group=process_group,
init_rrefs=init_rrefs,
sharding_spec=sharding_spec,
)
@classmethod
def _init_from_local_shards_and_global_metadata( # type: ignore[override]
cls,
local_shards: List[Shard],
sharded_tensor_metadata: ShardedTensorMetadata,
process_group=None,
init_rrefs=False,
sharding_spec=None,
) -> "ShardedTensor":
"""
Initialize a ShardedTensor with local shards and a global
ShardedTensorMetadata built on each rank.
Warning: This API is experimental and subject to change. It does
not do cross rank validations, and fully rely on the user
for the correctness of sharded_tensor_metadata on each rank
"""
process_group = (
process_group
if process_group is not None
else distributed_c10d._get_default_group()
)
current_rank = dist.get_rank(process_group)
shards_metadata = sharded_tensor_metadata.shards_metadata
local_shard_metadatas = []
# collect local shard metadatas from the global sharded_tensor_metadata
for shard_metadata in shards_metadata: # type: ignore[attr-defined]
rank, local_device = _parse_and_validate_remote_device(process_group, shard_metadata.placement)
if current_rank == rank:
local_shard_metadatas.append(shard_metadata)
if len(local_shards) != len(local_shard_metadatas):
raise RuntimeError(
f'Number of local shards ({len(local_shards)}) does not match number of local '
f'shards metadata in sharded_tensor_metadata ({len(local_shard_metadatas)}) '
f'on rank ({current_rank}) '
)
sharded_tensor = super(
ShardedTensor, cls
)._init_from_local_shards_and_global_metadata(
local_shards, sharded_tensor_metadata, sharding_spec=sharding_spec
)
sharded_tensor._prepare_init(process_group=process_group, init_rrefs=init_rrefs)
# run post initialization, i.e. map registration, rpc initialization
sharded_tensor._post_init()
return sharded_tensor
def sharding_spec(self) -> shard_spec.ShardingSpec:
"""
Returns the ShardingSpec for the tensor.
"""
return self._sharding_spec
def reshard(self, resharding_spec: shard_spec.ShardingSpec) -> ShardedTensor:
"""
Reshard a sharded tensor given the ``resharding_spec``. For now, we only support
single local shard.
If ``resharding_spec`` is same as the original one, this becomes a no-op.
If only ``resharding_spec`` shares the same sharding dim with the original one,
we swap local shards directly.
For more generic cases, we merge different shards across different ranks and split
the local shards based on the ``resharding_spec`` via `all_to_all` collective API.
Args:
resharding_spec (:class:`torch.distributed._shard.sharding_spec.ShardingSpec`): The
specification describing how the tensor is sharded.
Returns:
A :class:`ShardedTensor` object whose local shards are resharded.
Examples:
>>> # We have 2 process groups, 2 ranks.
>>> # xdoctest: +SKIP
>>> tensor = torch.arange(4, dtype=torch.int64) + 1 + 2 * rank
>>> tensor = torch.stack([tensor, tensor])
>>> tensor
tensor([[1, 2, 3, 4], [1, 2, 3, 4]]) # Rank 0
tensor([[3, 4, 5, 6], [3, 4, 5, 6]]) # Rank 1
tensor([[5, 6, 7, 8], [5, 6, 7, 8]]) # Rank 2
tensor([[7, 8, 9, 10], [7, 8, 9, 10]]) # Rank 3
>>> sharding_dim = 0
>>> spec = ChunkShardingSpec(
dim=sharding_dim,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
>>> current_offsets = [0] * 2
>>> current_offsets[0] = rank * 2
>>> shard_metadata = ShardMetadata(
shard_offsets=copy.deepcopy(current_offsets),
shard_sizes=tensor.size(),
placement=spec.placements[rank],
)
>>> local_shards = [
Shard(
tensor=tensor,
metadata=shard_metadata,
)
]
>>> st = ShardedTensor._init_from_local_shards(local_shards, tensor.size())
>>> sharding_dim = 1
>>> resharding_spec = ChunkShardingSpec(
dim=sharding_dim,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
>>> st.reshard(resharding_spec)
>>> tensor = st.local_shards()[0].tensor
>>> tensor
tensor([[1], [1], [3], [3], [5], [5], [7], [7]]) # Rank 0
tensor([[2], [2], [4], [4], [6], [6], [8], [8]]) # Rank 1
tensor([[3], [3], [5], [5], [7], [7], [9], [9]]) # Rank 2
tensor([[4], [4], [6], [6], [8], [8], [10], [10]]) # Rank 3
"""
if (
not isinstance(resharding_spec, shard_spec.ChunkShardingSpec) or
not isinstance(self._sharding_spec, shard_spec.ChunkShardingSpec)
):
raise NotImplementedError("Only ChunkShardingSpec supported for reshard.")
if (len(self.local_shards()) != 1):
raise NotImplementedError("Only single local shard supported for reshard.")
if self._sharding_spec.dim == resharding_spec.dim: # type: ignore[attr-defined]
if self._sharding_spec.placements == resharding_spec.placements: # type: ignore[attr-defined]
return self
else:
local_shards, shards_metadata = reshuffle_local_shard(
self.local_tensor(),
self.size(), # type: ignore[arg-type]
self._sharding_spec,
resharding_spec,
self._process_group,
)
else:
local_shards, shards_metadata = reshard_local_shard(
self.local_tensor(),
self.size(), # type: ignore[arg-type]
self._sharding_spec,
resharding_spec,
self._process_group,
)
self._local_shards = local_shards
self._metadata.shards_metadata = shards_metadata
self._sharding_spec = resharding_spec
return self
def local_tensor(self) -> torch.Tensor:
"""
Return local tensor for a sharded_tensor. For now we only support single local shard.
Returns:
A :class:`torch.Tensor` of the local shard.
"""
if len(self.local_shards()) != 1:
raise NotImplementedError("Only single local shard is supported.")
return self.local_shards()[0].tensor
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
def dispatch(st: ShardedTensor, func: Callable):
# Dispatch to custom user provided op first if it exists.
if func in _CUSTOM_SHARDED_OPS:
return _CUSTOM_SHARDED_OPS[func](types, args, kwargs, st._process_group)
# Dispatch to custom sharding spec op if it has one.
if _has_custom_op(st._sharding_spec, func):
return _dispatch_custom_op(
st._sharding_spec,
func,
types,
args,
kwargs,
st._process_group
)
if func in _SHARDED_OPS:
return _SHARDED_OPS[func](types, args, kwargs, st._process_group)
raise RuntimeError(
f"torch function '{func.__name__}', with args: {args} and "
f"kwargs: {kwargs} not supported for ShardedTensor!")
# Find ShardedTensor instance to get process_group and sharding_spec.
st_instance = None
def find_sharded_tensor(e):
nonlocal st_instance
if st_instance is None and isinstance(e, ShardedTensor):
st_instance = e
tree_map(find_sharded_tensor, args)
tree_map(find_sharded_tensor, kwargs)
if st_instance is not None:
return dispatch(st_instance, func)
raise RuntimeError(
f"torch function '{func.__name__}', with args: {args} and "
f"kwargs: {kwargs} not supported for ShardedTensor!")
def is_pinned(self) -> bool: # type: ignore[override]
"""
Returns True if the sharded tensor (each local shard) resides in pinned memory.
"""
return self._metadata.tensor_properties.pin_memory
def _register_remote_shards(self, remote_shards: List[rpc.RRef[Shard]], rpc_rank: int):
self._remote_shards[rpc_rank] = remote_shards
def remote_shards(self) -> Dict[int, List[rpc.RRef[Shard]]]:
"""
Returns a Dict[int, RRef] with keys being the RPC rank and values
being RRefs to shards on that rank. Need to initialize the
RPC framework for this functionality.
Raises an exception if ShardedTensor was created with ``init_rrefs=False``
"""
if not self._init_rrefs:
raise RuntimeError(
'ShardedTensor created with init_rrefs=False, no RRefs to remote shards available'
)
return self._remote_shards
def __hash__(self):
return id(self)
def __repr__(self):
return f'ShardedTensor({self._metadata})'
@dataclass
class ProcessGroupState:
"""
State for ser-de of process group
"""
local_rank: int
global_rank: int
local_world_size: int
global_world_size: int
def __getstate__(self):
pg_state = ShardedTensor.ProcessGroupState(
distributed_c10d.get_rank(self._process_group),
distributed_c10d.get_rank(),
distributed_c10d.get_world_size(self._process_group),
distributed_c10d.get_world_size(),
)
return self._local_shards, self._metadata, pg_state, self._sharding_spec, self._init_rrefs
def __setstate__(self, state):
self._sharded_tensor_id = None
if not distributed_c10d.is_initialized():
raise RuntimeError(
'Need to initialize default process group using '
'"init_process_group" before loading ShardedTensor')
self._local_shards, self._metadata, pg_state, self._sharding_spec, self._init_rrefs = state
# Setup process group
from torch.distributed._shard.api import _get_current_process_group
self._process_group = _get_current_process_group()
# Validate process group.
local_rank = distributed_c10d.get_rank(self._process_group)
if pg_state.local_rank != local_rank:
raise RuntimeError(
f'Local rank at save time was {pg_state.local_rank}, but at '
f'load time was {local_rank}')
global_rank = distributed_c10d.get_rank()
if pg_state.global_rank != global_rank:
raise RuntimeError(
f'Global rank at save time was {pg_state.global_rank}, but at '
f'load time was {global_rank}')
local_world_size = distributed_c10d.get_world_size(self._process_group)
if pg_state.local_world_size != local_world_size:
raise RuntimeError(
f'Local world size at save time was {pg_state.local_world_size}, '
f'but at load time was {local_world_size}')
global_world_size = distributed_c10d.get_world_size()
if pg_state.global_world_size != global_world_size:
raise RuntimeError(
f'Global world size at save time was {pg_state.global_world_size}, '
f'but at load time was {global_world_size}')
self._post_init()
def _create_tensor_from_params(*size, local_device, tensor_properties: TensorProperties):
""" Helper to construct tensor from size, device and common params. """
dtype = tensor_properties.dtype
layout = tensor_properties.layout
requires_grad = tensor_properties.requires_grad
memory_format = tensor_properties.memory_format
pin_memory = tensor_properties.pin_memory
return torch.empty(
*size, dtype=dtype, layout=layout,
device=local_device, requires_grad=requires_grad,
memory_format=memory_format, pin_memory=pin_memory
)
|