File: shard.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (58 lines) | stat: -rw-r--r-- 2,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from dataclasses import dataclass
from typing import List

import torch
from torch.distributed._shard.metadata import ShardMetadata
from torch.distributed.remote_device import _remote_device


@dataclass
class Shard(object):
    """
    Container which holds the data for a shard as a Tensor and also
    the associated metadata for that shard.

    Args:
        tensor(torch.Tensor): Local tensor for the shard.
        metadata(:class `torch.distributed._shard.sharded_tensor.ShardMetadata`):
            The metadata for the shard, including offsets, lengths and device placement.
    """
    __slots__ = ['tensor', 'metadata']
    tensor: torch.Tensor
    metadata: ShardMetadata

    def __post_init__(self):
        # verification between local tensor and metadata
        if list(self.tensor.size()) != self.metadata.shard_sizes:
            raise ValueError(
                "Shard tensor size does not match with metadata.shard_lengths! "
                f"Found shard tensor size: {list(self.tensor.size())}, "
                f"metadata.shard_lengths: {self.metadata.shard_sizes}, "
            )
        placement_device = self.metadata.placement
        if placement_device is not None and placement_device.device() != self.tensor.device:
            raise ValueError(
                f"Local shard tensor device does not match with local Shard's placement! "
                f"Found local shard tensor device: {self.tensor.device}, "
                f"local shard metadata placement device: {placement_device.device()}"
            )

    @classmethod
    def from_tensor_and_offsets(cls, tensor: torch.Tensor, shard_offsets: List[int], rank: int):
        """
        Creates a Shard of a ShardedTensor from a local torch.Tensor, shard_offsets and rank.

        Args:
            tensor(torch.Tensor): Local tensor for the shard.
            shard_offsets(List[int]): List of integers specify the offset
                of the shard on each dimension.
            rank(int): Specify the rank for the shard.
        """
        shard_sizes = list(tensor.size())
        placement = _remote_device(f"rank:{rank}/{str(tensor.device)}")
        shard_meta = ShardMetadata(
            shard_offsets=shard_offsets,
            shard_sizes=shard_sizes,
            placement=placement
        )
        return Shard(tensor, shard_meta)