File: quantization_hooks.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (215 lines) | stat: -rw-r--r-- 8,204 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.distributed as dist
from torch import nn


def _quantize_per_tensor_cuda(x, scale, zero_point):
    y = torch.round(x / scale) + zero_point
    y = torch.clamp(y, 0, 255).to(torch.uint8)
    return y


def _dequantize_per_tensor_cuda(y, scale, zero_point):
    x = scale * (y.to(torch.float32) - zero_point)
    return x


def _quantize_per_channel_cuda(x, scale, zero_point):
    y = torch.zeros(x.size(), device=x.device)
    for i in range(x.size()[0]):
        y[i, :] = torch.round(x[i, :] / scale[i]) + zero_point[i]
    y = torch.clamp(y, 0, 255).to(torch.uint8)
    return y


def _dequantize_per_channel_cuda(y, scale, zero_point):
    y = y.to(torch.float32).cuda(y.device)
    x = torch.zeros_like(y, device=y.device)
    for i in range(x.size()[0]):
        x[i, :] = scale[i] * (y[i, :] - zero_point[i])
    return x


def _get_allgather_out_list(all_gather_in_list, world_size):
    out_list = [
        torch.zeros_like(
            all_gather_in_list,
            device=all_gather_in_list.device,
            dtype=all_gather_in_list.dtype,
        )
        for _ in range(world_size)
    ]
    return out_list


def quantization_pertensor_hook(
    process_group: dist.ProcessGroup, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
    """
    Applies the ``torch.quantize_per_tensor`` logic to DDP using ``allgather``
    protocol. Workers first allgather the scale and zero point of their own
    ``GradBucket`` prior to the quantization. After all workers have that information,
    the first ``then`` callback called ``quantize_and_allgather`` quantizes worker's
    own gradient tensor, and uses ``allgather`` to communicate these accross all workers.
    The final ``then`` callback called ``dequantize_and_aggregate``, dequantizes and
    aggregates each quantized gradient tensor locally and returns the mean.

    .. warning ::
        This is experimental, and uses ``allgather`` protocol which is considerably slower than
        ``allreduce`` protocol. It works only with flattened grads.

    Example::
        >>> # xdoctest: +SKIP
        >>> ddp_model.register_comm_hook(process_group, quantization_pertensor_hook)
    """
    group_to_use = process_group if process_group is not None else dist.group.WORLD
    rank = process_group.rank() if process_group is not None else dist.get_rank()
    world_size = group_to_use.size()

    tensor = bucket.buffer()

    myObserver = torch.quantization.MinMaxObserver().cuda(tensor.device)
    myObserver(tensor)

    s, z = myObserver.calculate_qparams()
    s_and_z = torch.FloatTensor([s, z]).cuda(tensor.device)

    all_ranks_s_and_z = _get_allgather_out_list(s_and_z, world_size)

    # First, allgather scale and zeros.
    fut = dist.all_gather(
        all_ranks_s_and_z, s_and_z, group=group_to_use, async_op=True
    ).get_future()

    def quantize_and_allgather(fut):
        # Store scale and zeros accross all workers.
        all_ranks_s_and_z = fut.wait()[0]
        # All workers quantize their own ``GradBucket`` tensors.
        quantized_tensor = _quantize_per_tensor_cuda(
            tensor, all_ranks_s_and_z[rank][0], all_ranks_s_and_z[rank][1]
        )
        # Allgather quantized tensors.
        fut = dist.all_gather(
            _get_allgather_out_list(quantized_tensor, world_size),
            quantized_tensor,
            group=group_to_use,
            async_op=True,
        ).get_future()

        return fut.wait()

    def dequantize_and_aggregate(fut):
        all_ranks_quantized_tensor = fut.wait()[0]

        aggregated_dequantized_tensor = torch.zeros_like(
            all_ranks_quantized_tensor[0], device=tensor.device, dtype=torch.float32
        )
        # Using previously allgathered scales and zeros, dequantize gradient tensors
        # locally and then aggregate them.
        for r, quantized_tensor in enumerate(all_ranks_quantized_tensor):
            aggregated_dequantized_tensor += _dequantize_per_tensor_cuda(
                quantized_tensor, all_ranks_s_and_z[r][0], all_ranks_s_and_z[r][1]
            )

        return aggregated_dequantized_tensor / world_size

    return fut.then(quantize_and_allgather).then(dequantize_and_aggregate)


def quantization_perchannel_hook(
    process_group: dist.ProcessGroup, bucket: dist.GradBucket, bucket_size=512
) -> torch.futures.Future[torch.Tensor]:
    """
    Applies the ``torch.quantize_per_channel`` logic to DDP using ``allgather``
    protocol. Compared to pertensor, the main motivation of perchannel is
    for considerably large tensors such as a tensor that contains 6 million
    elements quantizing per a bucket size of 512 (or 128) elements may significantly
    increase the resolution.

    It first splits ``GradBucket`` tensor into multiple chunks (channels) of ``bucket_size``
    elements. Then, workers allgather the scales and zero points of their own
    ``GradBucket`` prior to the quantization. After all workers have that information,
    the first ``then`` callback called ``quantize_and_allgather`` quantizes worker's
    own gradient tensor, and uses ``allgather`` to communicate these accross all workers.
    The final ``then`` callback called ``dequantize_and_aggregate``, dequantizes, flattens, and
    aggregates each quantized gradient tensor locally and returns the mean.

    .. warning ::
        This is experimental, and uses ``allgather`` protocol which is considerably slower than
        ``allreduce`` protocol. It works only with flattened grads.

    Example::
        >>> # xdoctest: +SKIP
        >>> ddp_model.register_comm_hook(process_group, quantization_perchannel_hook)
    """
    group_to_use = process_group if process_group is not None else dist.group.WORLD
    rank = process_group.rank() if process_group is not None else dist.get_rank()
    world_size = group_to_use.size()

    tensor = bucket.buffer()

    tensor_in_channels = (
        nn.functional.pad(
            input=tensor,
            pad=(0, bucket_size - len(tensor) % bucket_size),
            mode="constant",
            value=0,
        )
        .view(-1, bucket_size)
        .cuda(tensor.device)
    )

    myPerChannelObserver = torch.quantization.PerChannelMinMaxObserver().cuda(
        tensor.device
    )
    myPerChannelObserver(tensor_in_channels)

    s_ch, z_ch = myPerChannelObserver.calculate_qparams()
    s_and_z = torch.stack((s_ch, z_ch)).cuda(tensor.device)

    all_ranks_s_and_z = _get_allgather_out_list(s_and_z, world_size)
    # First, allgather scale and zeros.
    fut = dist.all_gather(
        all_ranks_s_and_z, s_and_z, group=group_to_use, async_op=True
    ).get_future()

    def quantize_and_allgather(fut):
        # Store scale and zeros accross all workers.
        all_ranks_s_and_z = fut.wait()[0]
        # All workers quantize their corresponding ``GradBucket`` tensors.
        quantized_tensor = _quantize_per_channel_cuda(
            tensor_in_channels,
            all_ranks_s_and_z[rank, 0, :],
            all_ranks_s_and_z[rank, 1, :],
        )
        # Allgather quantized tensors.
        fut = dist.all_gather(
            _get_allgather_out_list(quantized_tensor, world_size),
            quantized_tensor,
            group=group_to_use,
            async_op=True,
        ).get_future()

        return fut.wait()

    def dequantize_and_aggregate(fut):
        all_ranks_quantized_tensor = fut.wait()[0]

        aggregated_dequantized_tensor = torch.zeros_like(
            all_ranks_quantized_tensor[0], device=tensor.device, dtype=torch.float32
        )
        # Using previously allgathered scales and zeros, dequantize gradient tensors
        # locally and then aggregate them.
        for r, quantized_tensor in enumerate(all_ranks_quantized_tensor):
            aggregated_dequantized_tensor += _dequantize_per_channel_cuda(
                quantized_tensor, all_ranks_s_and_z[r][0], all_ranks_s_and_z[r][1]
            )

        return (
            torch.flatten(aggregated_dequantized_tensor).cuda(tensor.device)[
                : tensor.size()[0]
            ]
            / world_size
        )

    return fut.then(quantize_and_allgather).then(dequantize_and_aggregate)