File: distributed_c10d.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (3605 lines) | stat: -rw-r--r-- 143,181 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
import itertools
import collections.abc
import contextlib
import io
import logging
import os
import pickle
import time
import warnings
from collections import namedtuple
from datetime import timedelta
from typing import Any, Dict, Optional, Tuple, Union

import torch
from torch._C._distributed_c10d import (
    AllreduceCoalescedOptions,
    AllreduceOptions,
    AllToAllOptions,
    _DistributedBackendOptions,
    BarrierOptions,
    BroadcastOptions,
    GatherOptions,
    PrefixStore,
    ProcessGroup,
    ReduceOp,
    ReduceOptions,
    ReduceScatterOptions,
    ScatterOptions,
    Store,
    DebugLevel,
    get_debug_level,
    Work
)
from torch._six import string_classes

from .constants import default_pg_timeout
from .rendezvous import register_rendezvous_handler, rendezvous  # noqa: F401

__all__ = [
    'Backend', 'GroupMember', 'P2POp', 'all_gather', 'all_gather_coalesced',
    'all_gather_multigpu', 'all_gather_object', 'all_reduce',
    'all_reduce_coalesced', 'all_reduce_multigpu', 'all_to_all',
    'all_to_all_single', 'barrier', 'batch_isend_irecv', 'broadcast',
    'broadcast_multigpu', 'broadcast_object_list', 'destroy_process_group',
    'dist_backend', 'gather', 'gather_object', 'get_backend', 'get_rank',
    'get_world_size', 'group', 'init_process_group', 'irecv',
    'is_gloo_available', 'is_initialized', 'is_mpi_available',
    'is_nccl_available', 'is_torchelastic_launched', 'is_ucc_available',
    'isend', 'monitored_barrier', 'new_group', 'new_subgroups',
    'new_subgroups_by_enumeration', 'recv', 'reduce', 'reduce_multigpu',
    'reduce_scatter', 'reduce_scatter_multigpu', 'scatter',
    'scatter_object_list', 'send', 'supports_complex',
    'AllreduceCoalescedOptions', 'AllreduceOptions', 'AllToAllOptions',
    'BarrierOptions', 'BroadcastOptions', 'GatherOptions', 'PrefixStore',
    'ProcessGroup', 'ReduceOp', 'ReduceOptions', 'ReduceScatterOptions',
    'ScatterOptions', 'Store', 'DebugLevel', 'get_debug_level', 'Work',
    'default_pg_timeout', 'get_group_rank', 'get_global_rank', 'get_process_group_ranks',
    'reduce_op', 'all_gather_into_tensor', 'reduce_scatter_tensor',
]

_MPI_AVAILABLE = True
_NCCL_AVAILABLE = True
_GLOO_AVAILABLE = True
_UCC_AVAILABLE = True

_pickler = pickle.Pickler
_unpickler = pickle.Unpickler

# Change __module__ of all imported types from torch._C._distributed_c10d that are public
def _export_c_types():
    _public_types_to_change_module = [
        AllreduceCoalescedOptions,
        AllreduceOptions,
        AllToAllOptions,
        BarrierOptions,
        BroadcastOptions,
        GatherOptions,
        PrefixStore,
        ProcessGroup,
        ReduceOp,
        ReduceOptions,
        ReduceScatterOptions,
        ScatterOptions,
        Store,
        DebugLevel,
        get_debug_level,
        Work
    ]
    for type in _public_types_to_change_module:
        type.__module__ = "torch.distributed.distributed_c10d"
_export_c_types()

try:
    from torch._C._distributed_c10d import ProcessGroupMPI
    ProcessGroupMPI.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupMPI"]
except ImportError:
    _MPI_AVAILABLE = False

try:
    from torch._C._distributed_c10d import ProcessGroupNCCL
    ProcessGroupNCCL.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupNCCL"]
except ImportError:
    _NCCL_AVAILABLE = False

try:
    from torch._C._distributed_c10d import ProcessGroupGloo
    from torch._C._distributed_c10d import _ProcessGroupWrapper
    ProcessGroupGloo.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupGloo"]
except ImportError:
    _GLOO_AVAILABLE = False

try:
    from torch._C._distributed_c10d import ProcessGroupUCC
    ProcessGroupUCC.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupUCC"]
except ImportError:
    _UCC_AVAILABLE = False

logger = logging.getLogger(__name__)

PG_WRAPPER_STORE_PREFIX = "pg_wrapper"


# Some reduce ops are not supported by complex numbers and will result in an error.
# We currently provide complex support to the distributed API by viewing
# complex tensors as real (torch.view_as_real), meaning that calling
# these unsupported ops will return garbage values rather than error out.
# (e.g. max(2+3i, 3+2i) = 3+3i)
# We'd like calls to unsupported ops to error out accordingly,
# rather than returning garbage values.
def supports_complex(reduceOp: ReduceOp) -> bool:
    denyList = [
        ReduceOp.MAX,
        ReduceOp.MIN,
        ReduceOp.PRODUCT,
        ReduceOp.BAND,
        ReduceOp.BOR,
        ReduceOp.BXOR,
    ]
    return reduceOp not in denyList


class Backend(object):
    """
    An enum-like class of available backends: GLOO, NCCL, UCC, MPI, and other registered
    backends.

    The values of this class are lowercase strings, e.g., ``"gloo"``. They can
    be accessed as attributes, e.g., ``Backend.NCCL``.

    This class can be directly called to parse the string, e.g.,
    ``Backend(backend_str)`` will check if ``backend_str`` is valid, and
    return the parsed lowercase string if so. It also accepts uppercase strings,
    e.g., ``Backend("GLOO")`` returns ``"gloo"``.

    .. note:: The entry ``Backend.UNDEFINED`` is present but only used as
              initial value of some fields. Users should neither use it directly
              nor assume its existence.
    """

    UNDEFINED = "undefined"
    GLOO = "gloo"
    NCCL = "nccl"
    UCC = "ucc"
    MPI = "mpi"
    TCP = "tcp"

    _BackendPlugin = namedtuple("_BackendPlugin", ["creator_fn", "extended_api"])

    _plugins: Dict[str, _BackendPlugin] = {}

    def __new__(cls, name: str):
        if not isinstance(name, string_classes):
            raise ValueError("Backend name must be a string, but got: {}".format(name))
        value = getattr(Backend, name.upper(), Backend.UNDEFINED)

        if value == Backend.TCP:
            raise ValueError(
                "TCP backend has been deprecated. Please use "
                "Gloo or MPI backend for collective operations "
                "on CPU tensors."
            )
        elif value == Backend.UNDEFINED:
            raise ValueError("Invalid backend: '{}'".format(name))
        elif value != Backend.GLOO and value != Backend.NCCL and value != Backend.UCC and value != Backend.MPI:
            value = name.lower()
        return value

    @classmethod
    def register_backend(cls, name, func, extended_api=False):
        """
        Registers a new backend with the given name and instantiating function.

        This class method is used by 3rd party ``ProcessGroup`` extension to
        register new backends.

        Args:
            name (str): Backend name of the ``ProcessGroup`` extension. It
                        should match the one in ``init_process_group()``.
            func (function): Function handler that instantiates the backend.
                             The function should be implemented in the backend
                             extension and takes four arguments, including
                             ``store``, ``rank``, ``world_size``, and ``timeout``.
            extended_api (bool, optional): Whether the backend supports extended argument structure.
                                           Default: ``False``. If set to ``True``, the backend
                                           will get an instance of ``c10d::DistributedBackendOptions``, and
                                           a process group options object as defined by the backend implementation.

        .. note:: This support of 3rd party backend is experimental and subject to change.

        """
        # Allow UCC plugin if Pytorch is not built with native support.
        # TODO: remove this exception once UCC plugin is fully deprecated.
        if (name != Backend.UCC or (name == Backend.UCC and is_ucc_available())):
            assert not hasattr(Backend, name.upper()), (
                f"{name.upper()} c10d backend already exist"
            )
        assert name.upper() not in Backend._plugins, (
            f"{name.upper()} c10d backend creator function already exist"
        )

        setattr(Backend, name.upper(), name.upper())
        Backend._plugins[name.upper()] = Backend._BackendPlugin(func, extended_api)


# `_backend`, `dist_backend`, and `reduce_op` are here to maintain backward
# compatibility with pre-c10d distributed package.
# TODO: remove them when users are ready to take a hard dependency on PyTorch 1.
_backend: str = Backend.UNDEFINED
dist_backend = Backend


# NOTE(crcrpar): [ReduceOp static class attributes to support `isinstance`]
#   A ReduceOp instance of `PREMUL_SUM` is supposed to be created via `_make_nccl_premul_sum`
#   while the other `op`s (meaning RedOpType members) can be directly passed to c10d reduce collectives.
#   I changed `ReduceOp` to struct from enum class and introduced RedOpType enum class for PREMUL_SUM,
#   which broke an implicit contract of ReduceOp being enum-like with which users apply isinstance to
#   `op`, for example, `isinstance(ReduceOp.SUM, ReduceOp)`: https://github.com/pytorch/pytorch/issues/87191
DENY_LIST = ("PREMUL_SUM", )
for _red_op_name, _red_op_value in ReduceOp.RedOpType.__members__.items():
    setattr(ReduceOp, _red_op_name, _red_op_value if _red_op_name in DENY_LIST else ReduceOp(_red_op_value))


class _reduce_op(object):
    r"""
    Deprecated enum-like class for reduction operations: ``SUM``, ``PRODUCT``,
    ``MIN``, and ``MAX``.

    :class:`~torch.distributed.ReduceOp` is recommended to use instead.
    """

    def __init__(self):
        # __members__ is a dict storing key-value pairs for enum classes
        for k, v in ReduceOp.RedOpType.__members__.items():
            setattr(self, k, v)
        self.__members__ = ReduceOp.RedOpType.__members__

    def __getattribute__(self, key):
        warnings.warn(
            "torch.distributed.reduce_op is deprecated, please use "
            "torch.distributed.ReduceOp instead"
        )
        return object.__getattribute__(self, key)


reduce_op = _reduce_op()


class group(object):
    # Points to the default PG once initialized.
    WORLD: Optional[ProcessGroup] = None


class GroupMember(object):
    # Alias to group.WORLD for backward compatibility
    WORLD = group.WORLD
    NON_GROUP_MEMBER = object()


# Cached process groups
# For NCCL and GLOO pg, it is a map from ProcessGroup to (Backend, Store)
# For MPI pg, it is a map from ProcessGroup to (Backend, None)
_pg_map: Dict[ProcessGroup, Tuple[str, Optional[Store]]] = {}
# Process group's names, map from ProcessGroup to str
_pg_names: Dict[ProcessGroup, str] = {}
# Process group's global rank to local rank mapping
_pg_group_ranks: Dict[ProcessGroup, Dict[int, int]] = {}

# Default process group state
_default_pg_init_method = None

# Process group count for default naming
_group_count = 0

STORE_BASED_BARRIER_PREFIX = "store_based_barrier_key"


def _get_pg_device(group: ProcessGroup):
    """
    Returns the device to use with ``group``.
    This is cuda for NCCL and CPU for everything else
    """
    if _check_for_nccl_backend(group):
        return torch.device("cuda", torch.cuda.current_device())
    return torch.device("cpu")


def _store_based_barrier(rank, store, timeout):
    """
    Barrier based on store which is used for synchronizing processes after
    ``init_process_group`` or ``new_group``. Intended to be used only with
    those two methods and is not a generic alternative to ``barrier()``.
    """
    store_key = "{}:{}".format(STORE_BASED_BARRIER_PREFIX, _group_count)
    store.add(store_key, 1)
    logger.info("Added key: {} to store for rank: {}".format(store_key, rank))

    # Now wait for all workers to check in with the store.
    world_size = get_world_size()
    # Use 'add' instead of 'get' since for some store implementations 'add'
    # doesn't work well with 'get'. Ideally the store implementations should
    # be fixed, but for backward compatiblity reasons it is risky to change
    # the store implementations. Once, we completely migrate away from these
    # legacy stores, we can use 'get' here instead.
    worker_count = store.add(store_key, 0)
    start = time.time()
    log_time = time.time()
    while worker_count != world_size:
        time.sleep(0.01)
        worker_count = store.add(store_key, 0)

        # Print status periodically to keep track.
        if timedelta(seconds=(time.time() - log_time)) > timedelta(seconds=10):
            logger.info(
                "Waiting in store based barrier to initialize process group for "
                "rank: {}, key: {} (world_size={}, worker_count={}, timeout={})".format(
                    rank, store_key, world_size, worker_count, timeout
                )
            )
            log_time = time.time()

        if timedelta(seconds=(time.time() - start)) > timeout:
            raise RuntimeError(
                "Timed out initializing process group in store based barrier on "
                "rank: {}, for key: {} (world_size={}, worker_count={}, timeout={})".format(
                    rank, store_key, world_size, worker_count, timeout
                )
            )

    logger.info(
        f"Rank {rank}: Completed store-based barrier for key:{store_key} with {world_size} nodes."
    )


def _rank_not_in_group(group: ProcessGroup):
    """
    Helper that checks if the current process's rank is not in a given group.
    """
    if group is None:
        return False
    return group == GroupMember.NON_GROUP_MEMBER


def _warn_not_in_group(op_name):
    global_rank = -1 if GroupMember.WORLD is None else GroupMember.WORLD.rank()
    warnings.warn(
        f"Running {op_name} on global rank {global_rank} which does not "
        "belong to the given group."
    )


def get_group_rank(group: ProcessGroup, global_rank: int) -> int:
    """
    Translate a global rank into a group rank.

    ``global_rank`` must be part of ``group`` otherwise this raises RuntimeError.

    Args:
        group (ProcessGroup): ProcessGroup to find the relative rank.
        global_rank (int): Global rank to query.

    Returns:
        Group rank of ``global_rank`` relative to ``group``

    N.B. calling this function on the default process group returns identity
    """
    if group is GroupMember.WORLD:
        return global_rank
    if group not in _pg_group_ranks:
        raise RuntimeError(f"Group {group} is not registered, please create group with torch.distributed.new_group API")
    group_ranks = _pg_group_ranks[group]
    if global_rank not in group_ranks:
        raise RuntimeError(f"Global rank {global_rank} is not part of group {group}")

    return group_ranks[global_rank]

def get_global_rank(group: ProcessGroup, group_rank: int) -> int:
    """
    Translate a group rank into a global rank.

    ``group_rank`` must be part of `group` otherwise this raises RuntimeError.

    Args:
        group (ProcessGroup): ProcessGroup to find the global rank from.
        group_rank (int): Group rank to query.

    Returns:
        Global rank of ``group_rank`` relative to ``group``

    N.B. calling this function on the default process group returns identity
    """
    if group is GroupMember.WORLD:
        return group_rank
    if group not in _pg_group_ranks:
        raise RuntimeError(f"Group {group} is not registered, please create group with torch.distributed.new_group API")
    for rank, grp_rank in _pg_group_ranks[group].items():
        if grp_rank == group_rank:
            return rank
    raise RuntimeError(f"Group rank {group_rank} is not part of group {group}")

# TODO: remove this once the ecosystem moves away from it.
def _get_global_rank(group, rank):
    """
    This method is deprecated, please use get_global_rank.
    """
    warnings.warn(
        "torch.distributed.distributed_c10d._get_global_rank is deprecated "
        "please use torch.distributed.distributed_c10d.get_global_rank instead"
    )
    return get_global_rank(group, rank)


def get_process_group_ranks(group: ProcessGroup):
    """
    Get all ranks associated with ``group``.

    Args:
        group (ProcessGroup): ProcessGroup to get all ranks from.

    Returns:
        List of global ranks ordered by group rank.
    """
    return list(_pg_group_ranks[group].keys())

def _get_group_size(group):
    """
    Helper that gets a given group's world size.
    """
    if group is GroupMember.WORLD or group is None:
        default_pg = _get_default_group()
        return default_pg.size()
    return group.size()


def _check_single_tensor(param, param_name):
    """
    Helper to check that the parameter ``param_name`` is a single tensor.
    """
    if not isinstance(param, torch.Tensor):
        raise RuntimeError(
            "Invalid function argument. Expected parameter `{}` "
            "to be of type torch.Tensor.".format(param_name)
        )


def _check_tensor_list(param, param_name):
    """
    Helper to check that the parameter ``param_name`` is a list of tensors.
    """
    if not isinstance(param, list) or not all(
        isinstance(p, torch.Tensor) for p in param
    ):
        raise RuntimeError(
            "Invalid function argument. Expected parameter `{}` "
            "to be of type List[torch.Tensor].".format(param_name)
        )

def _as_iterable(obj) -> collections.abc.Iterable:
    return obj if isinstance(obj, list) else (obj,)

def _ensure_all_tensors_same_dtype(*tensors) -> None:
    last_dtype = None
    for tensor in itertools.chain(*map(_as_iterable, tensors)):
        tensor_dtype = tensor.dtype
        # Mixing complex and its element type is allowed
        if tensor_dtype.is_complex:
            tensor_dtype = torch.float32 if tensor_dtype == torch.complex64 else torch.complex128

        if last_dtype is None:
            last_dtype = tensor_dtype
        else:
            if last_dtype != tensor_dtype:
                raise RuntimeError(
                    "Invalid usage of tensors with different dtypes"
                    f"Found {last_dtype} and  {tensor.dtype}"
                )


def _check_op(op):
    """
    Helper to check that the ``op`` is either isend or irecv.
    """
    if op not in [isend, irecv]:
        raise RuntimeError(
            "Invalid ``op``. Expected ``op`` "
            "to be of type ``torch.distributed.isend`` or "
            "``torch.distributed.irecv``."
        )


def _check_p2p_op_list(p2p_op_list):
    """
    Helper to check that the ``p2p_op_list`` is a list of P2POp instances and
    all ops use the same group.
    """
    if not isinstance(p2p_op_list, list) or not all(
        isinstance(p2p_op, P2POp) for p2p_op in p2p_op_list
    ):
        raise RuntimeError(
            "Invalid ``p2p_op_list``. Each op is expected to "
            "to be of type ``torch.distributed.P2POp``."
        )

    group = p2p_op_list[0].group
    if not all(group == p2p_op.group for p2p_op in p2p_op_list):
        raise RuntimeError("All ops need to use the same group.")


def is_mpi_available() -> bool:
    """
    Checks if the MPI backend is available.
    """
    return _MPI_AVAILABLE


def is_nccl_available() -> bool:
    """
    Checks if the NCCL backend is available.
    """
    return _NCCL_AVAILABLE


def is_gloo_available() -> bool:
    """
    Checks if the Gloo backend is available.
    """
    return _GLOO_AVAILABLE


def is_ucc_available() -> bool:
    """
    Checks if the UCC backend is available.
    """
    return _UCC_AVAILABLE


def is_initialized() -> bool:
    """
    Checking if the default process group has been initialized
    """
    return GroupMember.WORLD is not None


def is_torchelastic_launched() -> bool:
    """
    Checks whether this process was launched with ``torch.distributed.elastic``
    (aka torchelastic). The existence of ``TORCHELASTIC_RUN_ID`` environment
    variable is used as a proxy to determine whether the current process
    was launched with torchelastic. This is a reasonable proxy since
    ``TORCHELASTIC_RUN_ID`` maps to the rendezvous id which is always a
    non-null value indicating the job id for peer discovery purposes..
    """
    return os.getenv("TORCHELASTIC_RUN_ID") is not None


def _get_default_group():
    """
    Getting the default process group created by init_process_group
    """
    if not is_initialized():
        raise RuntimeError(
            "Default process group has not been initialized, "
            "please make sure to call init_process_group."
        )
    return GroupMember.WORLD


def _get_default_store():
    """
    Getting the default store created by init_process_group
    """
    if not is_initialized():
        raise RuntimeError(
            "Default process group has not been initialized, "
            "please make sure to call init_process_group."
        )
    default_pg = _get_default_group()
    _, default_store = _pg_map[default_pg]
    return default_store


def _update_default_pg(pg):
    GroupMember.WORLD = group.WORLD = pg


def get_backend(group: Optional[ProcessGroup] = None) -> str:
    """
    Returns the backend of the given process group.

    Args:
        group (ProcessGroup, optional): The process group to work on. The
            default is the general main process group. If another specific group
            is specified, the calling process must be part of :attr:`group`.

    Returns:
        The backend of the given process group as a lower case string.

    """
    if group is None:
        pg = _get_default_group()
    else:
        pg = group
    if _rank_not_in_group(pg):
        raise RuntimeError("Invalid process group specified")
    pg_store = _pg_map.get(pg, None)
    assert pg_store is not None
    return pg_store[0]


def init_process_group(
    backend: Union[str, Backend],
    init_method: Optional[str] = None,
    timeout: timedelta = default_pg_timeout,
    world_size: int = -1,
    rank: int = -1,
    store: Optional[Store] = None,
    group_name: str = "",
    pg_options: Optional[Any] = None,
):
    """
    Initializes the default distributed process group, and this will also
    initialize the distributed package.

    There are 2 main ways to initialize a process group:
        1. Specify ``store``, ``rank``, and ``world_size`` explicitly.
        2. Specify ``init_method`` (a URL string) which indicates where/how
           to discover peers. Optionally specify ``rank`` and ``world_size``,
           or encode all required parameters in the URL and omit them.

    If neither is specified, ``init_method`` is assumed to be "env://".


    Args:
        backend (str or Backend): The backend to use. Depending on
            build-time configurations, valid values include ``mpi``, ``gloo``,
            ``nccl``, and ``ucc``. This field should be given as a lowercase
            string (e.g., ``"gloo"``), which can also be accessed via
            :class:`Backend` attributes (e.g., ``Backend.GLOO``). If using
            multiple processes per machine with ``nccl`` backend, each process
            must have exclusive access to every GPU it uses, as sharing GPUs
            between processes can result in deadlocks. ``ucc`` backend is
            experimental.
        init_method (str, optional): URL specifying how to initialize the
                                     process group. Default is "env://" if no
                                     ``init_method`` or ``store`` is specified.
                                     Mutually exclusive with ``store``.
        world_size (int, optional): Number of processes participating in
                                    the job. Required if ``store`` is specified.
        rank (int, optional): Rank of the current process (it should be a
                              number between 0 and ``world_size``-1).
                              Required if ``store`` is specified.
        store(Store, optional): Key/value store accessible to all workers, used
                                to exchange connection/address information.
                                Mutually exclusive with ``init_method``.
        timeout (timedelta, optional): Timeout for operations executed against
            the process group. Default value equals 30 minutes.
            This is applicable for the ``gloo`` backend. For ``nccl``, this is
            applicable only if the environment variable ``NCCL_BLOCKING_WAIT``
            or ``NCCL_ASYNC_ERROR_HANDLING`` is set to 1. When
            ``NCCL_BLOCKING_WAIT`` is set, this is the duration for which the
            process will block and wait for collectives to complete before
            throwing an exception. When ``NCCL_ASYNC_ERROR_HANDLING`` is set,
            this is the duration after which collectives will be aborted
            asynchronously and the process will crash. ``NCCL_BLOCKING_WAIT``
            will provide errors to the user which can be caught and handled,
            but due to its blocking nature, it has a performance overhead. On
            the other hand, ``NCCL_ASYNC_ERROR_HANDLING`` has very little
            performance overhead, but crashes the process on errors. This is
            done since CUDA execution is async and it is no longer safe to
            continue executing user code since failed async NCCL operations
            might result in subsequent CUDA operations running on corrupted
            data. Only one of these two environment variables should be set.
            For ``ucc``, blocking wait is supported similar to NCCL. However,
            async error handling is done differently since with UCC we have
            progress thread and not watch-dog thread.
        group_name (str, optional, deprecated): Group name.
        pg_options (ProcessGroupOptions, optional): process group options
            specifying what additional options need to be passed in during
            the construction of specific process groups. As of now, the only
            options we support is ``ProcessGroupNCCL.Options`` for the ``nccl``
            backend, ``is_high_priority_stream`` can be specified so that
            the nccl backend can pick up high priority cuda streams when
            there're compute kernels waiting.

    .. note:: To enable ``backend == Backend.MPI``, PyTorch needs to be built from source
        on a system that supports MPI.

    """
    global _pg_group_ranks
    global _backend
    global _default_pg_init_method

    if not isinstance(timeout, timedelta):
        raise RuntimeError(
            "Expected timeout argument to be of type" "datetime.timedelta"
        )

    if GroupMember.WORLD is not None:
        raise RuntimeError("trying to initialize the default process group " "twice!")

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    backend = Backend(backend)

    if backend == Backend.MPI:
        if world_size != -1 or rank != -1:
            warnings.warn(
                "For MPI backend, world_size ({}) and rank ({}) "
                "are ignored since they are assigned by the "
                "MPI runtime.".format(world_size, rank)
            )

        default_pg = _new_process_group_helper(
            -1, -1, [], Backend.MPI, None, group_name=group_name, timeout=timeout
        )
        _update_default_pg(default_pg)
    else:
        # backward compatible API
        if store is None:
            rendezvous_iterator = rendezvous(
                init_method, rank, world_size, timeout=timeout
            )
            store, rank, world_size = next(rendezvous_iterator)
            store.set_timeout(timeout)

            # Use a PrefixStore to avoid accidental overrides of keys used by
            # different systems (e.g. RPC) in case the store is multi-tenant.
            store = PrefixStore("default_pg", store)

        default_pg = _new_process_group_helper(
            world_size,
            rank,
            [],
            backend,
            store,
            pg_options=pg_options,
            group_name=group_name,
            timeout=timeout,
        )
        _update_default_pg(default_pg)

    _pg_group_ranks[GroupMember.WORLD] = {i: i for i in range(GroupMember.WORLD.size())}  # type: ignore[attr-defined, index]
    _backend = _pg_map[GroupMember.WORLD][0]  # type: ignore[index]
    _default_pg_init_method = init_method

    # barrier at the end to ensure that once we return from this method, all
    # process groups including global variables are updated correctly on all
    # ranks.
    if backend == Backend.MPI:
        # MPI backend doesn't use store.
        barrier()
    else:
        # Use store based barrier here since barrier() used a bunch of
        # default devices and messes up NCCL internal state.
        _store_based_barrier(rank, store, timeout)
        # Set sequence numbers for gloo and nccl process groups.
        if get_backend(default_pg) in [Backend.GLOO, Backend.NCCL]:
            default_pg._set_sequence_number_for_group()


def _new_process_group_helper(
    group_size,
    group_rank,
    global_ranks_in_group,
    backend,
    store,
    pg_options=None,
    group_name=None,
    timeout=default_pg_timeout,
):
    """
    Create a new distributed process group.

    This function must be called by ALL processes in the global group, even if
    the calling process is not part of the newly created group. In that case,
    this function returns GroupMember.NON_GROUP_MEMBER.

    This function is called with ``group_ranks == []`` for the default group.
    """
    global _pg_map
    global _group_count
    global _pg_names

    if not group_name:
        group_name = str(_group_count)
        _group_count += 1

    if group_name in _pg_names.values():
        raise RuntimeError(
            "The specified group name has already been "
            "created, please use a different group name"
        )

    if not isinstance(timeout, timedelta):
        raise RuntimeError(
            "Expected timeout argument to be of type" "datetime.timedelta"
        )

    # The list of group ranks is empty if we're creating the default group.
    is_default_group = len(global_ranks_in_group) == 0

    backend = Backend(backend)
    pg: Union[ProcessGroupGloo, ProcessGroupMPI, ProcessGroupNCCL, ProcessGroupUCC]
    if backend == Backend.MPI:
        if not is_mpi_available():
            raise RuntimeError(
                "Distributed package doesn't have MPI built in."
                " MPI is only included if you build PyTorch from"
                " source on a host that has MPI installed."
            )
        pg = ProcessGroupMPI.create(global_ranks_in_group)
        if not pg:
            return GroupMember.NON_GROUP_MEMBER
        _pg_map[pg] = (Backend.MPI, None)
        _pg_names[pg] = group_name
    else:
        # If this is a subgroup (which means group_ranks is specified),
        # we check if the current process is a member of the new group.
        if not is_default_group:
            global_rank = _get_default_group().rank()
            if global_rank not in global_ranks_in_group:
                return GroupMember.NON_GROUP_MEMBER

        # Use the group name as prefix in the default store, such that
        # a single store can be reused by multiple groups.
        prefix_store = PrefixStore(group_name, store)

        if backend == Backend.GLOO:
            if pg_options is not None:
                raise RuntimeError("GLOO options not supported")
            pg = ProcessGroupGloo(prefix_store, group_rank, group_size, timeout=timeout)
            # In debug mode and if GLOO is available, wrap in a wrapper PG that
            # enables enhanced collective checking for debugability.
            if get_debug_level() == DebugLevel.DETAIL:
                if not _GLOO_AVAILABLE:
                    logger.info(
                        """TORCH_DISTRIBUTED_DEBUG was set to DETAIL, but
                                GLOO is not available. Build with Gloo to
                                create a wrapper process group in debug mode
                                to aid collective desynchronization debugging."""
                    )
                else:
                    pg = _create_process_group_wrapper(
                        wrapped_pg=pg,
                        store_prefix=group_name,
                        store=store,
                        rank=group_rank,
                        world_size=group_size,
                        timeout=timeout,
                    )
            _pg_map[pg] = (Backend.GLOO, store)
            _pg_names[pg] = group_name
        elif backend == Backend.NCCL:
            if not is_nccl_available():
                raise RuntimeError("Distributed package doesn't have NCCL " "built in")
            if pg_options is not None:
                assert isinstance(
                    pg_options, ProcessGroupNCCL.Options
                ), "Expected pg_options argument to be of type ProcessGroupNCCL.Options"
            else:
                # default pg_options for NCCL
                pg_options = ProcessGroupNCCL.Options()
                pg_options.is_high_priority_stream = False
                pg_options._timeout = timeout

            pg = ProcessGroupNCCL(prefix_store, group_rank, group_size, pg_options)
            # In debug mode and if GLOO is available, wrap in a wrapper PG that
            # enables enhanced collective checking for debugability.
            if get_debug_level() == DebugLevel.DETAIL:
                if not _GLOO_AVAILABLE:
                    logger.info(
                        """TORCH_DISTRIBUTED_DEBUG was set to DETAIL, but
                                GLOO is not available. Build with Gloo to
                                create a wrapper process group in debug mode
                                to aid collective desynchronization debugging."""
                    )
                else:
                    pg = _create_process_group_wrapper(
                        wrapped_pg=pg,
                        store_prefix=group_name,
                        store=store,
                        rank=group_rank,
                        world_size=group_size,
                        timeout=timeout,
                    )
            _pg_map[pg] = (Backend.NCCL, store)
            _pg_names[pg] = group_name
        elif backend == Backend.UCC and is_ucc_available():
            # TODO: once UCC plugin is fully deprecated, remove
            # is_ucc_available() from above elif-condition and raise
            # RuntimeError if is_ucc_available() returns false.

            pg = ProcessGroupUCC(prefix_store, group_rank, group_size, timeout=timeout)
            # In debug mode and if GLOO is available, wrap in a wrapper PG that
            # enables enhanced collective checking for debugability.
            if get_debug_level() == DebugLevel.DETAIL:
                if not _GLOO_AVAILABLE:
                    logger.info(
                        """TORCH_DISTRIBUTED_DEBUG was set to DETAIL, but
                                GLOO is not available. Build with Gloo to
                                create a wrapper process group in debug mode
                                to aid collective desynchronization debugging."""
                    )
                else:
                    pg = _create_process_group_wrapper(
                        wrapped_pg=pg,
                        store_prefix=group_name,
                        store=store,
                        rank=group_rank,
                        world_size=group_size,
                        timeout=timeout,
                    )
            _pg_map[pg] = (Backend.UCC, store)
            _pg_names[pg] = group_name
        else:
            assert backend.upper() in Backend._plugins, (
                f"Unknown c10d backend type {backend.upper()}"
            )

            backend_plugin = Backend._plugins[backend.upper()]
            creator_fn = backend_plugin.creator_fn
            extended_api = backend_plugin.extended_api

            if not extended_api:
                pg = creator_fn(prefix_store, group_rank, group_size, timeout)
            else:
                dist_backend_opts = _DistributedBackendOptions()
                dist_backend_opts.store = prefix_store
                dist_backend_opts.group_rank = group_rank
                dist_backend_opts.group_size = group_size
                dist_backend_opts.timeout = timeout
                dist_backend_opts.group_id = group_name
                dist_backend_opts.global_ranks_in_group = global_ranks_in_group

                pg = creator_fn(dist_backend_opts, pg_options)
            _pg_map[pg] = (backend, store)
            _pg_names[pg] = group_name

    return pg


def destroy_process_group(group: Optional[ProcessGroup] = None):
    """
    Destroy a given process group, and deinitialize the distributed package

    Args:
        group (ProcessGroup, optional): The process group to be destroyed, if
                                        group.WORLD is given, all process
                                        groups including the default one will
                                        be destroyed.
    """
    global _pg_map
    global _pg_names
    global _pg_group_ranks
    global _default_pg_init_method
    global _group_count

    if group == GroupMember.NON_GROUP_MEMBER:
        return

    if group is None:
        pg = GroupMember.WORLD
    else:
        pg = group

    assert pg is not None
    if _pg_map.get(pg, None) is None:
        raise RuntimeError("Invalid process group specified")

    if group is None or group == GroupMember.WORLD:
        _update_default_pg(None)
        _default_pg_init_method = None
        _pg_map.clear()
        _pg_names.clear()
        _pg_group_ranks.clear()

        # when process group doesn't have an explicit name (only WORLD (default)
        # process group can have an explicit name), we use global _group_counter
        # to generate the name. We need to reset the counter on destruction to
        # allow consistent value to be generated when we re-create process
        # groups after some trainers recover from failure
        #
        # We only reset this when WORLD is being destroyed because if this
        # process group is in good state, we aren't dealing with failures.
        _group_count = 0
    else:
        del _pg_map[pg]
        del _pg_names[pg]
        del _pg_group_ranks[pg]


def get_rank(group: Optional[ProcessGroup] = None) -> int:
    """
    Returns the rank of the current process in the provided ``group`` or the
    default group if none was provided.

    Rank is a unique identifier assigned to each process within a distributed
    process group. They are always consecutive integers ranging from 0 to
    ``world_size``.

    Args:
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.

    Returns:
        The rank of the process group
        -1, if not part of the group

    """
    if _rank_not_in_group(group):
        return -1

    default_pg = _get_default_group()
    if group is None or group is GroupMember.WORLD:
        return default_pg.rank()

    return get_group_rank(group, default_pg.rank())


def get_world_size(group: Optional[ProcessGroup] = None) -> int:
    """
    Returns the number of processes in the current process group

    Args:
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.

    Returns:
        The world size of the process group
        -1, if not part of the group

    """
    if _rank_not_in_group(group):
        return -1

    return _get_group_size(group)


def isend(tensor: torch.Tensor, dst: int, group: Optional[ProcessGroup] = None, tag: int = 0) -> Work:
    """
    Sends a tensor asynchronously.

    .. warning::
        Modifying ``tensor`` before the request completes causes undefined
        behavior.

    Args:
        tensor (Tensor): Tensor to send.
        dst (int): Destination rank.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        tag (int, optional): Tag to match send with remote recv

    Returns:
        A distributed request object.
        None, if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("isend")
        return

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        return default_pg.send([tensor], dst, tag)
    else:
        group_dst_rank = get_group_rank(group, dst)
        return group.send([tensor], group_dst_rank, tag)


def irecv(tensor: torch.Tensor, src: Optional[int] = None, group: Optional[ProcessGroup] = None, tag: int = 0) -> Work:
    """
    Receives a tensor asynchronously.

    Args:
        tensor (Tensor): Tensor to fill with received data.
        src (int, optional): Source rank. Will receive from any
            process if unspecified.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        tag (int, optional): Tag to match recv with remote send

    Returns:
        A distributed request object.
        None, if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("irecv")
        return

    if group is None or group is GroupMember.WORLD:
        pg = _get_default_group()
    else:
        pg = group

    if src is None:
        return pg.recv_anysource([tensor], tag)
    else:
        if pg is GroupMember.WORLD:
            return pg.recv([tensor], src, tag)
        else:
            group_src_rank = get_group_rank(pg, src)
            return pg.recv([tensor], group_src_rank, tag)


def send(tensor: torch.Tensor, dst: int, group: Optional[ProcessGroup] = None, tag: int = 0) -> Work:
    """
    Sends a tensor synchronously.

    Args:
        tensor (Tensor): Tensor to send.
        dst (int): Destination rank.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        tag (int, optional): Tag to match send with remote recv

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("send")
        return

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        default_pg.send([tensor], dst, tag).wait()
    else:
        group_dst_rank = get_group_rank(group, dst)
        group.send([tensor], group_dst_rank, tag).wait()


def recv(tensor: torch.Tensor, src: Optional[int] = None, group: Optional[ProcessGroup] = None, tag: int = 0) -> Work:
    """
    Receives a tensor synchronously.

    Args:
        tensor (Tensor): Tensor to fill with received data.
        src (int, optional): Source rank. Will receive from any
            process if unspecified.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        tag (int, optional): Tag to match recv with remote send

    Returns:
        Sender rank
        -1, if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("recv")
        return -1

    if group is None:
        pg = _get_default_group()
    else:
        pg = group

    if src is None:
        work = pg.recv_anysource([tensor], tag)
        work.wait()
        src_rank = work._source_rank()
        if group is None or group is GroupMember.WORLD:
            return src_rank
        else:
            return get_global_rank(pg, src_rank)
    else:
        if group is None or group is GroupMember.WORLD:
            pg.recv([tensor], src, tag).wait()
        else:
            group_src_rank = get_group_rank(pg, src)
            pg.recv([tensor], group_src_rank, tag).wait()
        return src


class P2POp(object):
    """
    A class to build point-to-point operations for ``batch_isend_irecv``.

    This class builds the type of P2P operation, communication buffer, peer rank,
    Process Group group, and tag. Instances of this class will be passed to
    ``batch_isend_irecv`` for point-to-point communications.

    Args:
        op (Callable): A function to send data to or receive data from a peer process.
            The type of ``op`` is either ``torch.distributed.isend`` or
            ``torch.distributed.irecv``.
        tensor (Tensor): Tensor to send or receive.
        peer (int): Destination or source rank.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        tag (int, optional): Tag to match send with recv.
    """

    def __init__(self, op, tensor, peer, group=None, tag=0):
        self.op = op
        self.tensor = tensor
        self.peer = peer
        self.group = group
        self.tag = tag

    def __new__(cls, op, tensor, peer, group=None, tag=0):
        _check_op(op)
        _check_single_tensor(tensor, "tensor")
        return object.__new__(cls)


@contextlib.contextmanager
def _coalescing_manager(group, reqs):
    if group is None:
        group = _get_default_group()
    group._start_coalescing()
    try:
        yield
    finally:
        group._end_coalescing(reqs)


def batch_isend_irecv(p2p_op_list):
    """
    Send or Receive a batch of tensors asynchronously and return a list of requests.

    Process each of the operations in ``p2p_op_list`` and return the corresponding
    requests. NCCL, Gloo, and UCC backend are currently supported.

    Args:
        p2p_op_list: A list of point-to-point operations(type of each operator is
            ``torch.distributed.P2POp``). The order of the isend/irecv in the list
            matters and it needs to match with corresponding isend/irecv on the
            remote end.

    Returns:
        A list of distributed request objects returned by calling the corresponding
        op in the op_list.

    Examples:
        >>> # xdoctest: +SKIP("no rank")
        >>> send_tensor = torch.arange(2) + 2 * rank
        >>> recv_tensor = torch.randn(2)
        >>> send_op = dist.P2POp(dist.isend, send_tensor, (rank + 1)%world_size)
        >>> recv_op = dist.P2POp(dist.irecv, recv_tensor, (rank - 1 + world_size)%world_size)
        >>> reqs = batch_isend_irecv([send_op, recv_op])
        >>> for req in reqs:
        >>>     req.wait()
        >>> recv_tensor
        tensor([2, 3])     # Rank 0
        tensor([0, 1])     # Rank 1

    .. note:: Note that when this API is used with the NCCL PG backend, users must set
        the current GPU device with `torch.cuda.set_device`, otherwise it will
        lead to unexpected hang issues.

        In addition, if this API is the first collective call in the ``group``
        passed to ``dist.P2POp``, all ranks of the ``group`` must participate in
        this API call; otherwise, the behavior is undefined. If this API call is
        not the first collective call in the ``group``, batched P2P operations
        involving only a subset of ranks of the ``group`` are allowed.
    """
    _check_p2p_op_list(p2p_op_list)
    group = p2p_op_list[0].group
    reqs = []
    with _coalescing_manager(group, reqs):
        for p2p_op in p2p_op_list:
            op = p2p_op.op
            tensor = p2p_op.tensor
            peer = p2p_op.peer
            curr_group = p2p_op.group
            tag = p2p_op.tag

            ret = op(tensor, peer, curr_group, tag)

            if ret is not None:
                reqs.append(ret)
    return reqs


def broadcast_multigpu(tensor_list, src, group=None, async_op=False, src_tensor=0):
    """
    Broadcasts the tensor to the whole group with multiple GPU tensors
    per node.

    ``tensor`` must have the same number of elements in all the GPUs from
    all processes participating in the collective. each tensor in the list must
    be on a different GPU

    Only nccl and gloo backend are currently supported
    tensors should only be GPU tensors

    Args:
        tensor_list (List[Tensor]): Tensors that participate in the collective
            operation. If ``src`` is the rank, then the specified ``src_tensor``
            element of ``tensor_list`` (``tensor_list[src_tensor]``) will be
            broadcast to all other tensors (on different GPUs) in the src process
            and all tensors in ``tensor_list`` of other non-src processes.
            You also need to make sure that ``len(tensor_list)`` is the same
            for all the distributed processes calling this function.

        src (int): Source rank.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op
        src_tensor (int, optional): Source tensor rank within ``tensor_list``

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    warnings.warn(
        "torch.distributed.broadcast_multigpu will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#multi-gpu-collective-functions"
    )

    if _rank_not_in_group(group):
        _warn_not_in_group("broadcast_multigpu")
        return

    opts = BroadcastOptions()
    opts.rootRank = src
    opts.rootTensor = src_tensor

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.broadcast(tensor_list, opts)
    else:
        group_src_rank = get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.broadcast(tensor_list, opts)
    if async_op:
        return work
    else:
        work.wait()


def broadcast(tensor, src, group=None, async_op=False):
    """
    Broadcasts the tensor to the whole group.

    ``tensor`` must have the same number of elements in all processes
    participating in the collective.

    Args:
        tensor (Tensor): Data to be sent if ``src`` is the rank of current
            process, and tensor to be used to save received data otherwise.
        src (int): Source rank.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("broadcast")
        return

    opts = BroadcastOptions()
    opts.rootRank = src
    opts.rootTensor = 0

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.broadcast([tensor], opts)
    else:
        group_src_rank = get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.broadcast([tensor], opts)
    if async_op:
        return work
    else:
        work.wait()


def all_reduce_multigpu(tensor_list, op=ReduceOp.SUM, group=None, async_op=False):
    r"""
    Reduces the tensor data across all machines in such a way that all get
    the final result. This function reduces a number of tensors on every node,
    while each tensor resides on different GPUs.
    Therefore, the input tensor in the tensor list needs to be GPU tensors.
    Also, each tensor in the tensor list needs to reside on a different GPU.

    After the call, all ``tensor`` in ``tensor_list`` is going to be bitwise
    identical in all processes.

    Complex tensors are supported.

    Only nccl and gloo backend is currently supported
    tensors should only be GPU tensors

    Args:
        tensor_list (List[Tensor]): List of input and output tensors of
            the collective. The function operates in-place and requires that
            each tensor to be a GPU tensor on different GPUs.
            You also need to make sure that ``len(tensor_list)`` is the same for
            all the distributed processes calling this function.
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on. If
            ``None``, the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    warnings.warn(
        "torch.distributed.all_reduce_multigpu will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#multi-gpu-collective-functions"
    )

    if _rank_not_in_group(group):
        return

    tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in tensor_list
    ]

    opts = AllreduceOptions()
    opts.reduceOp = op
    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allreduce(tensor_list, opts)
    else:
        work = group.allreduce(tensor_list, opts)

    if async_op:
        return work
    else:
        work.wait()


def all_reduce(tensor, op=ReduceOp.SUM, group=None, async_op=False):
    """
    Reduces the tensor data across all machines in such a way that all get
    the final result.

    After the call ``tensor`` is going to be bitwise identical in all processes.

    Complex tensors are supported.

    Args:
        tensor (Tensor): Input and output of the collective. The function
            operates in-place.
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    Examples:
        >>> # xdoctest: +SKIP("no rank")
        >>> # All tensors below are of torch.int64 type.
        >>> # We have 2 process groups, 2 ranks.
        >>> tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
        >>> tensor
        tensor([1, 2]) # Rank 0
        tensor([3, 4]) # Rank 1
        >>> dist.all_reduce(tensor, op=ReduceOp.SUM)
        >>> tensor
        tensor([4, 6]) # Rank 0
        tensor([4, 6]) # Rank 1

        >>> # All tensors below are of torch.cfloat type.
        >>> # We have 2 process groups, 2 ranks.
        >>> tensor = torch.tensor([1+1j, 2+2j], dtype=torch.cfloat) + 2 * rank * (1+1j)
        >>> tensor
        tensor([1.+1.j, 2.+2.j]) # Rank 0
        tensor([3.+3.j, 4.+4.j]) # Rank 1
        >>> dist.all_reduce(tensor, op=ReduceOp.SUM)
        >>> tensor
        tensor([4.+4.j, 6.+6.j]) # Rank 0
        tensor([4.+4.j, 6.+6.j]) # Rank 1

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("all_reduce")
        return

    if tensor.is_complex():
        if not supports_complex(op):
            raise RuntimeError(f"all_reduce does not support {op} on complex tensors")
        tensor = torch.view_as_real(tensor)

    opts = AllreduceOptions()
    opts.reduceOp = op
    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allreduce([tensor], opts)
    else:
        work = group.allreduce([tensor], opts)

    if async_op:
        return work
    else:
        work.wait()


def all_reduce_coalesced(tensors, op=ReduceOp.SUM, group=None, async_op=False):
    """
    WARNING: at this time individual shape checking is not implemented across nodes.
    For example, if the rank 0 node passes [torch.rand(4), torch.rand(2)] and the
    rank 1 node passes [torch.rand(2), torch.rand(2), torch.rand(2)], the allreduce
    operation will proceed without complaint and return erroneous outputs. This lack
    of shape checking results in significant performance improvements but users of this
    function should take extra care to ensure that each node passes in tensors whose
    shapes match across nodes.

    Reduces each tensor in tensors (residing on the same device) across all machines
    in such a way that all get the final result.

    After the call each tensor in tensors is going to bitwise identical
    in all processes.

    Complex tensors are supported.

    Args:
        tensors (List[Tensor]): Input and output of the collective. The function
            operates in-place.
        op (Optional[ReduceOp]): One of the values from
            ``torch.distributed.ReduceOp`` enum. Specifies an operation used for
            element-wise reductions.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (Optional[bool]): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group.

    """
    warnings.warn(
        "torch.distributed.all_reduce_coalesced will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#collective-functions"
    )
    _check_tensor_list(tensors, "tensor")
    _ensure_all_tensors_same_dtype(tensors)
    if _rank_not_in_group(group):
        _warn_not_in_group("all_reduce_coalesced")
        return

    if any([t.is_complex() for t in tensors]) and not supports_complex(op):
        raise RuntimeError(f"all_reduce does not support {op} on complex tensors")

    tensors = [t if not t.is_complex() else torch.view_as_real(t) for t in tensors]

    opts = AllreduceCoalescedOptions()
    opts.reduceOp = op
    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allreduce_coalesced(tensors, opts)
    else:
        work = group.allreduce_coalesced(tensors, opts)

    if async_op:
        return work.get_future()
    else:
        work.wait()


def reduce_multigpu(
    tensor_list, dst, op=ReduceOp.SUM, group=None, async_op=False, dst_tensor=0
):
    """
    Reduces the tensor data on multiple GPUs across all machines. Each tensor
    in ``tensor_list`` should reside on a separate GPU

    Only the GPU of ``tensor_list[dst_tensor]`` on the process with rank ``dst``
    is going to receive the final result.

    Only nccl backend is currently supported
    tensors should only be GPU tensors

    Args:
        tensor_list (List[Tensor]): Input and output GPU tensors of the
            collective. The function operates in-place.
            You also need to make sure that ``len(tensor_list)`` is the same for
            all the distributed processes calling this function.
        dst (int): Destination rank
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op
        dst_tensor (int, optional): Destination tensor rank within
                                    ``tensor_list``

    Returns:
        Async work handle, if async_op is set to True.
        None, otherwise

    """
    warnings.warn(
        "torch.distributed.reduce_multigpu will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#multi-gpu-collective-functions"
    )

    if _rank_not_in_group(group):
        _warn_not_in_group("reduce_multigpu")
        return

    opts = ReduceOptions()
    opts.reduceOp = op
    opts.rootRank = dst
    opts.rootTensor = dst_tensor

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.reduce(tensor_list, opts)
    else:
        group_dst_rank = get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.reduce(tensor_list, opts)

    if async_op:
        return work
    else:
        work.wait()


def reduce(tensor, dst, op=ReduceOp.SUM, group=None, async_op=False):
    """
    Reduces the tensor data across all machines.

    Only the process with rank ``dst`` is going to receive the final result.

    Args:
        tensor (Tensor): Input and output of the collective. The function
            operates in-place.
        dst (int): Destination rank
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("reduce")
        return

    opts = ReduceOptions()
    opts.reduceOp = op
    opts.rootRank = dst

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.reduce([tensor], opts)
    else:
        group_dst_rank = get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.reduce([tensor], opts)

    if async_op:
        return work
    else:
        work.wait()


def all_gather_multigpu(
    output_tensor_lists, input_tensor_list, group=None, async_op=False
):
    """
    Gathers tensors from the whole group in a list.
    Each tensor in ``tensor_list`` should reside on a separate GPU

    Only nccl backend is currently supported
    tensors should only be GPU tensors

    Complex tensors are supported.

    Args:
        output_tensor_lists (List[List[Tensor]]): Output lists. It should
            contain correctly-sized tensors on each GPU to be used for output
            of the collective, e.g. ``output_tensor_lists[i]`` contains the
            all_gather result that resides on the GPU of
            ``input_tensor_list[i]``.

            Note that each element of ``output_tensor_lists`` has the size of
            ``world_size * len(input_tensor_list)``, since the function all
            gathers the result from every single GPU in the group. To interpret
            each element of ``output_tensor_lists[i]``, note that
            ``input_tensor_list[j]`` of rank k will be appear in
            ``output_tensor_lists[i][k * world_size + j]``

            Also note that ``len(output_tensor_lists)``, and the size of each
            element in ``output_tensor_lists`` (each element is a list,
            therefore ``len(output_tensor_lists[i])``) need to be the same
            for all the distributed processes calling this function.

        input_tensor_list (List[Tensor]): List of tensors(on different GPUs) to
            be broadcast from current process.
            Note that ``len(input_tensor_list)`` needs to be the same for
            all the distributed processes calling this function.

        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    warnings.warn(
        "torch.distributed.all_gather_multigpu will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#multi-gpu-collective-functions"
    )

    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather_multigpu")
        return

    output_tensor_lists = [
        [t if not t.is_complex() else torch.view_as_real(t) for t in l]
        for l in output_tensor_lists
    ]
    input_tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in input_tensor_list
    ]

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allgather(output_tensor_lists, input_tensor_list)
    else:
        work = group.allgather(output_tensor_lists, input_tensor_list)

    if async_op:
        return work
    else:
        work.wait()


def _object_to_tensor(obj, device):
    f = io.BytesIO()
    _pickler(f).dump(obj)
    byte_storage = torch.ByteStorage.from_buffer(f.getvalue())  # type: ignore[attr-defined]
    # Do not replace `torch.ByteTensor` or `torch.LongTensor` with torch.tensor and specifying dtype.
    # Otherwise, it will casue 100X slowdown.
    # See: https://github.com/pytorch/pytorch/issues/65696
    byte_tensor = torch.ByteTensor(byte_storage).to(device)
    local_size = torch.LongTensor([byte_tensor.numel()]).to(device)
    return byte_tensor, local_size


def _tensor_to_object(tensor, tensor_size):
    tensor = tensor.cpu()
    buf = tensor.numpy().tobytes()[:tensor_size]
    return _unpickler(io.BytesIO(buf)).load()

def _check_for_nccl_backend(group):
    pg = group or _get_default_group()
    # Gate PG wrapper check on Gloo availability.
    if _GLOO_AVAILABLE:
        # It is not expected for PG to be wrapped many times, but support it just
        # in case
        while isinstance(pg, _ProcessGroupWrapper):
            pg = pg.wrapped_pg

    return (
        is_nccl_available() and
        isinstance(pg, ProcessGroupNCCL)
    )

def all_gather_object(object_list, obj, group=None):
    """
    Gathers picklable objects from the whole group into a list. Similar to
    :func:`all_gather`, but Python objects can be passed in. Note that the object
    must be picklable in order to be gathered.

    Args:
        object_list (list[Any]): Output list. It should be correctly sized as the
            size of the group for this collective and will contain the output.
        object (Any): Pickable Python object to be broadcast from current process.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used. Default is ``None``.

    Returns:
        None. If the calling rank is part of this group, the output of the
        collective will be populated into the input ``object_list``. If the
        calling rank is not part of the group, the passed in ``object_list`` will
        be unmodified.

    .. note:: Note that this API differs slightly from the :func:`all_gather`
        collective since it does not provide an ``async_op`` handle and thus
        will be a blocking call.

    .. note:: For NCCL-based processed groups, internal tensor representations
        of objects must be moved to the GPU device before communication takes
        place. In this case, the device used is given by
        ``torch.cuda.current_device()`` and it is the user's responsiblity to
        ensure that this is set so that each rank has an individual GPU, via
        ``torch.cuda.set_device()``.

    .. warning::
        :func:`all_gather_object` uses ``pickle`` module implicitly, which is
        known to be insecure. It is possible to construct malicious pickle data
        which will execute arbitrary code during unpickling. Only call this
        function with data you trust.

    Example::
        >>> # xdoctest: +SKIP("need process group init")
        >>> # Note: Process group initialization omitted on each rank.
        >>> import torch.distributed as dist
        >>> # Assumes world_size of 3.
        >>> gather_objects = ["foo", 12, {1: 2}] # any picklable object
        >>> output = [None for _ in gather_objects]
        >>> dist.all_gather_object(output, gather_objects[dist.get_rank()])
        >>> output
        ['foo', 12, {1: 2}]
    """
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather_object")
        return

    current_device = _get_pg_device(group)
    input_tensor, local_size = _object_to_tensor(obj, current_device)

    # Gather all local sizes. This is so that we can find the max size, and index
    # until the correct size when deserializing the tensors.
    group_size = get_world_size(group=group)
    object_sizes_tensor = torch.zeros(
        group_size, dtype=torch.long, device=current_device
    )
    object_size_list = [
        object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
    ]
    # Allgather tensor sizes
    all_gather(object_size_list, local_size, group=group)
    max_object_size = int(max(object_size_list).item())  # type: ignore[type-var]
    # Resize tensor to max size across all ranks.
    input_tensor.resize_(max_object_size)
    coalesced_output_tensor = torch.empty(
        max_object_size * group_size, dtype=torch.uint8, device=current_device
    )
    # Output tensors are nonoverlapping views of coalesced_output_tensor
    output_tensors = [
        coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
        for i in range(group_size)
    ]
    all_gather(output_tensors, input_tensor, group=group)
    # Deserialize outputs back to object.
    for i, tensor in enumerate(output_tensors):
        tensor = tensor.type(torch.uint8)
        if tensor.device != torch.device("cpu"):
            tensor = tensor.cpu()
        tensor_size = object_size_list[i]
        object_list[i] = _tensor_to_object(tensor, tensor_size)


def gather_object(obj, object_gather_list=None, dst=0, group=None):
    """
    Gathers picklable objects from the whole group in a single process.
    Similar to :func:`gather`, but Python objects can be passed in. Note that the
    object must be picklable in order to be gathered.

    Args:
        obj (Any): Input object. Must be picklable.
        object_gather_list (list[Any]): Output list. On the ``dst`` rank, it
            should be correctly sized as the size of the group for this
            collective and will contain the output. Must be ``None`` on non-dst
            ranks. (default is ``None``)
        dst (int, optional): Destination rank. (default is 0)
        group: (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used. Default is ``None``.

    Returns:
        None. On the ``dst`` rank, ``object_gather_list`` will contain the
        output of the collective.

    .. note:: Note that this API differs slightly from the gather collective
        since it does not provide an async_op handle and thus will be a blocking
        call.

    .. note:: For NCCL-based processed groups, internal tensor representations
        of objects must be moved to the GPU device before communication takes
        place. In this case, the device used is given by
        ``torch.cuda.current_device()`` and it is the user's responsiblity to
        ensure that this is set so that each rank has an individual GPU, via
        ``torch.cuda.set_device()``.

    .. warning::
        :func:`gather_object` uses ``pickle`` module implicitly, which is
        known to be insecure. It is possible to construct malicious pickle data
        which will execute arbitrary code during unpickling. Only call this
        function with data you trust.

    Example::
        >>> # xdoctest: +SKIP("need process group init")
        >>> # Note: Process group initialization omitted on each rank.
        >>> import torch.distributed as dist
        >>> # Assumes world_size of 3.
        >>> gather_objects = ["foo", 12, {1: 2}] # any picklable object
        >>> output = [None for _ in gather_objects]
        >>> dist.gather_object(
        ...     gather_objects[dist.get_rank()],
        ...     output if dist.get_rank() == 0 else None,
        ...     dst=0
        ... )
        >>> # On rank 0
        >>> output
        ['foo', 12, {1: 2}]
    """
    if _rank_not_in_group(group):
        _warn_not_in_group("gather_object")
        return

    # Ensure object_gather_list is specified appopriately.
    my_rank = get_rank()
    _validate_output_list_for_rank(my_rank, dst, object_gather_list)
    current_device = _get_pg_device(group)
    input_tensor, local_size = _object_to_tensor(obj, current_device)

    # Gather all local sizes. This is so that we can find the max size, and index
    # until the correct size when deserializing the tensors.
    group_size = get_world_size(group=group)
    object_sizes_tensor = torch.zeros(
        group_size, dtype=torch.long, device=current_device
    )
    object_size_list = [
        object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
    ]
    # Allgather tensor sizes. An all-gather is needed here despite this being a
    # gather, since each rank needs to broadcast a tensor of the same (maximal)
    # size.
    all_gather(object_size_list, local_size, group=group)
    max_object_size = int(max(object_size_list).item())  # type: ignore[type-var]
    # Resize tensor to max size across all ranks.
    input_tensor.resize_(max_object_size)
    # Avoid populating output tensors if the result won't be gathered on this rank.
    if my_rank == dst:
        coalesced_output_tensor = torch.empty(
            max_object_size * group_size, dtype=torch.uint8, device=current_device
        )
        # Output tensors are nonoverlapping views of coalesced_output_tensor
        output_tensors = [
            coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
            for i in range(group_size)
        ]
    # All ranks call gather with equal-sized tensors.
    gather(
        input_tensor,
        gather_list=output_tensors if my_rank == dst else None,
        dst=dst,
        group=group,
    )
    if my_rank != dst:
        return
    for i, tensor in enumerate(output_tensors):
        tensor = tensor.type(torch.uint8)
        tensor_size = object_size_list[i]
        object_gather_list[i] = _tensor_to_object(tensor, tensor_size)


def broadcast_object_list(object_list, src=0, group=None, device=None):
    """
    Broadcasts picklable objects in ``object_list`` to the whole group. Similar
    to :func:`broadcast`, but Python objects can be passed in.
    Note that all objects in ``object_list`` must be picklable in order to be
    broadcasted.

    Args:
        object_list (List[Any]): List of input objects to broadcast.
            Each object must be picklable. Only objects on the ``src`` rank will
            be broadcast, but each rank must provide lists of equal sizes.
        src (int): Source rank from which to broadcast ``object_list``.
        group: (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used. Default is ``None``.
        device (``torch.device``, optional): If not None, the objects are
            serialized and converted to tensors which are moved to the
            ``device`` before broadcasting. Default is ``None``.

    Returns:
        ``None``. If rank is part of the group, ``object_list`` will contain the
        broadcasted objects from ``src`` rank.

    .. note:: For NCCL-based processed groups, internal tensor representations
        of objects must be moved to the GPU device before communication takes
        place. In this case, the device used is given by
        ``torch.cuda.current_device()`` and it is the user's responsiblity to
        ensure that this is set so that each rank has an individual GPU, via
        ``torch.cuda.set_device()``.

    .. note:: Note that this API differs slightly from the :func:`all_gather`
        collective since it does not provide an ``async_op`` handle and thus
        will be a blocking call.

    .. warning::
        :func:`broadcast_object_list` uses ``pickle`` module implicitly, which
        is known to be insecure. It is possible to construct malicious pickle
        data which will execute arbitrary code during unpickling. Only call this
        function with data you trust.

    Example::
        >>> # xdoctest: +SKIP("need process group init")
        >>> # Note: Process group initialization omitted on each rank.
        >>> import torch.distributed as dist
        >>> if dist.get_rank() == 0:
        >>>     # Assumes world_size of 3.
        >>>     objects = ["foo", 12, {1: 2}] # any picklable object
        >>> else:
        >>>     objects = [None, None, None]
        >>> # Assumes backend is not NCCL
        >>> device = torch.device("cpu")
        >>> dist.broadcast_object_list(objects, src=0, device=device)
        >>> objects
        ['foo', 12, {1: 2}]
    """
    if _rank_not_in_group(group):
        _warn_not_in_group("broadcast_object_list")
        return

    # Current device selection.
    # To preserve backwards compatibility, ``device`` is default to ``None``
    # in which case we run current logic of device selection, i.e.
    # ``current_device`` is CUDA if backend is NCCL otherwise CPU device. In the
    # case it is not ``None`` we move the size and object tensors to be
    # broadcasted to this device.
    current_device = device or _get_pg_device(group)
    my_rank = get_rank()
    # Serialize object_list elements to tensors on src rank.
    if my_rank == src:
        tensor_list, size_list = zip(*[_object_to_tensor(obj, current_device) for obj in object_list])
        object_sizes_tensor = torch.cat(size_list)
    else:
        object_sizes_tensor = torch.empty(len(object_list), dtype=torch.long, device=current_device)

    # Broadcast object sizes
    broadcast(object_sizes_tensor, src=src, group=group)

    # Concatenate and broadcast serialized object tensors
    if my_rank == src:
        object_tensor = torch.cat(tensor_list)
    else:
        object_tensor = torch.empty(  # type: ignore[call-overload]
            torch.sum(object_sizes_tensor).item(),  # type: ignore[arg-type]
            dtype=torch.uint8,
            device=current_device
        )

    broadcast(object_tensor, src=src, group=group)
    # Deserialize objects using their stored sizes.
    offset = 0
    if my_rank != src:
        for i, obj_size in enumerate(object_sizes_tensor):
            obj_view = object_tensor[offset : offset + obj_size]
            obj_view = obj_view.type(torch.uint8)
            if obj_view.device != torch.device("cpu"):
                obj_view = obj_view.cpu()
            offset += obj_size
            object_list[i] = _tensor_to_object(obj_view, obj_size)


def scatter_object_list(
    scatter_object_output_list, scatter_object_input_list, src=0, group=None
):
    """
    Scatters picklable objects in ``scatter_object_input_list`` to the whole
    group. Similar to :func:`scatter`, but Python objects can be passed in. On
    each rank, the scattered object will be stored as the first element of
    ``scatter_object_output_list``. Note that all objects in
    ``scatter_object_input_list`` must be picklable in order to be scattered.

    Args:
        scatter_object_output_list (List[Any]): Non-empty list whose first
            element will store the object scattered to this rank.
        scatter_object_input_list (List[Any]): List of input objects to scatter.
            Each object must be picklable. Only objects on the ``src`` rank will
            be scattered, and the argument can be ``None`` for non-src ranks.
        src (int): Source rank from which to scatter
            ``scatter_object_input_list``.
        group: (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used. Default is ``None``.

    Returns:
        ``None``. If rank is part of the group, ``scatter_object_output_list``
        will have its first element set to the scattered object for this rank.

    .. note:: Note that this API differs slightly from the scatter collective
        since it does not provide an ``async_op`` handle and thus will be a
        blocking call.

    .. warning::
        :func:`scatter_object_list` uses ``pickle`` module implicitly, which
        is known to be insecure. It is possible to construct malicious pickle
        data which will execute arbitrary code during unpickling. Only call this
        function with data you trust.

    Example::
        >>> # xdoctest: +SKIP("need process group init")
        >>> # Note: Process group initialization omitted on each rank.
        >>> import torch.distributed as dist
        >>> if dist.get_rank() == 0:
        >>>     # Assumes world_size of 3.
        >>>     objects = ["foo", 12, {1: 2}] # any picklable object
        >>> else:
        >>>     # Can be any list on non-src ranks, elements are not used.
        >>>     objects = [None, None, None]
        >>> output_list = [None]
        >>> dist.scatter_object_list(output_list, objects, src=0)
        >>> # Rank i gets objects[i]. For example, on rank 2:
        >>> output_list
        [{1: 2}]
    """
    if _rank_not_in_group(group):
        _warn_not_in_group("scatter_object_list")
        return

    if (
        not isinstance(scatter_object_output_list, list)
        or len(scatter_object_output_list) < 1
    ):
        raise RuntimeError(
            "Expected argument scatter_object_output_list to be a list of size at least 1."
        )

    my_rank = get_rank(group)
    pg_device = _get_pg_device(group)
    if my_rank == src:
        tensor_list, tensor_sizes = zip(
            *[_object_to_tensor(obj, pg_device) for obj in scatter_object_input_list]
        )
        tensor_list, tensor_sizes = list(tensor_list), list(tensor_sizes)

    # Src rank broadcasts the maximum tensor size. This is because all ranks are
    # expected to call into scatter() with equal-sized tensors.
    if my_rank == src:
        max_tensor_size = max(tensor_sizes)
        for tensor in tensor_list:
            tensor.resize_(max_tensor_size)
    else:
        max_tensor_size = torch.tensor([0], dtype=torch.long, device=pg_device)
    broadcast(max_tensor_size, src=src, group=group)

    # Scatter actual serialized objects
    output_tensor = torch.empty(max_tensor_size.item(), dtype=torch.uint8, device=pg_device)
    scatter(
        output_tensor,
        scatter_list=None if my_rank != src else tensor_list,
        src=src,
        group=group,
    )

    # Scatter per-object sizes to trim tensors when deserializing back to object
    obj_tensor_size = torch.tensor([0], dtype=torch.long, device=pg_device)
    scatter(
        obj_tensor_size,
        scatter_list=None if my_rank != src else tensor_sizes,
        src=src,
        group=group,
    )

    # Deserialize back to object
    scatter_object_output_list[0] = _tensor_to_object(output_tensor, obj_tensor_size)


def all_gather(tensor_list, tensor, group=None, async_op=False):
    """
    Gathers tensors from the whole group in a list.

    Complex tensors are supported.

    Args:
        tensor_list (list[Tensor]): Output list. It should contain
            correctly-sized tensors to be used for output of the collective.
        tensor (Tensor): Tensor to be broadcast from current process.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    Examples:
        >>> # xdoctest: +SKIP("need process group init")
        >>> # All tensors below are of torch.int64 dtype.
        >>> # We have 2 process groups, 2 ranks.
        >>> tensor_list = [torch.zeros(2, dtype=torch.int64) for _ in range(2)]
        >>> tensor_list
        [tensor([0, 0]), tensor([0, 0])] # Rank 0 and 1
        >>> tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
        >>> tensor
        tensor([1, 2]) # Rank 0
        tensor([3, 4]) # Rank 1
        >>> dist.all_gather(tensor_list, tensor)
        >>> tensor_list
        [tensor([1, 2]), tensor([3, 4])] # Rank 0
        [tensor([1, 2]), tensor([3, 4])] # Rank 1

        >>> # All tensors below are of torch.cfloat dtype.
        >>> # We have 2 process groups, 2 ranks.
        >>> tensor_list = [torch.zeros(2, dtype=torch.cfloat) for _ in range(2)]
        >>> tensor_list
        [tensor([0.+0.j, 0.+0.j]), tensor([0.+0.j, 0.+0.j])] # Rank 0 and 1
        >>> tensor = torch.tensor([1+1j, 2+2j], dtype=torch.cfloat) + 2 * rank * (1+1j)
        >>> tensor
        tensor([1.+1.j, 2.+2.j]) # Rank 0
        tensor([3.+3.j, 4.+4.j]) # Rank 1
        >>> dist.all_gather(tensor_list, tensor)
        >>> tensor_list
        [tensor([1.+1.j, 2.+2.j]), tensor([3.+3.j, 4.+4.j])] # Rank 0
        [tensor([1.+1.j, 2.+2.j]), tensor([3.+3.j, 4.+4.j])] # Rank 1

    """
    _check_tensor_list(tensor_list, "tensor_list")
    _check_single_tensor(tensor, "tensor")
    _ensure_all_tensors_same_dtype(tensor_list, tensor)
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather")
        return

    tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in tensor_list
    ]
    tensor = tensor if not tensor.is_complex() else torch.view_as_real(tensor)

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allgather([tensor_list], [tensor])
    else:
        work = group.allgather([tensor_list], [tensor])

    if async_op:
        return work
    else:
        work.wait()


def all_gather_into_tensor(output_tensor, input_tensor, group=None, async_op=False):
    """
    Gather tensors from all ranks and put them in a single output tensor.

    Args:
        output_tensor (Tensor): Output tensor to accommodate tensor elements
            from all ranks. It must be correctly sized to have one of the
            following forms:
            (i) a concatenation of all the input tensors along the primary
            dimension; for definition of "concatenation", see ``torch.cat()``;
            (ii) a stack of all the input tensors along the primary dimension;
            for definition of "stack", see ``torch.stack()``.
            Examples below may better explain the supported output forms.
        input_tensor (Tensor): Tensor to be gathered from current rank.
            Different from the ``all_gather`` API, the input tensors in this
            API must have the same size across all ranks.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    Examples:
        >>> # xdoctest: +SKIP("need process group init")
        >>> # All tensors below are of torch.int64 dtype and on CUDA devices.
        >>> # We have two ranks.
        >>> device = torch.device(f'cuda:{rank}')
        >>> tensor_in = torch.arange(2, dtype=torch.int64, device=device) + 1 + 2 * rank
        >>> tensor_in
        tensor([1, 2], device='cuda:0') # Rank 0
        tensor([3, 4], device='cuda:1') # Rank 1
        >>> # Output in concatenation form
        >>> tensor_out = torch.zeros(world_size * 2, dtype=torch.int64, device=device)
        >>> dist.all_gather_into_tensor(tensor_out, tensor_in)
        >>> tensor_out
        tensor([1, 2, 3, 4], device='cuda:0') # Rank 0
        tensor([1, 2, 3, 4], device='cuda:1') # Rank 1
        >>> # Output in stack form
        >>> tensor_out2 = torch.zeros(world_size, 2, dtype=torch.int64, device=device)
        >>> dist.all_gather_into_tensor(tensor_out2, tensor_in)
        >>> tensor_out2
        tensor([[1, 2],
                [3, 4]], device='cuda:0') # Rank 0
        tensor([[1, 2],
                [3, 4]], device='cuda:1') # Rank 1

    .. warning::
        The Gloo backend does not support this API.

    """
    _check_single_tensor(input_tensor, "input_tensor")
    _check_single_tensor(output_tensor, "output_tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather_into_tensor")
        return

    output_tensor = (
        output_tensor
        if not output_tensor.is_complex()
        else torch.view_as_real(output_tensor)
    )
    input_tensor = (
        input_tensor
        if not input_tensor.is_complex()
        else torch.view_as_real(input_tensor)
    )

    if group is None:
        default_pg = _get_default_group()
        work = default_pg._allgather_base(output_tensor, input_tensor)
    else:
        work = group._allgather_base(output_tensor, input_tensor)

    if async_op:
        return work
    else:
        work.wait()


def _all_gather_base(output_tensor, input_tensor, group=None, async_op=False):
    """
    Single tensor all gather. Gathers a single tensor from all ranks, and puts them in a single output tensor.

    Args:
        output_tensor (Tensor): Output tensor. It should contain
            correctly-sized tensors to be used for output of the collective.
        input_tensor (Tensor): Tensor to be broadcast from current process.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    .. warning::
        `_all_gather_base` is a private function. Users should use
        `all_gather_into_tensor` instead.

    """
    warnings.warn(
        "torch.distributed._all_gather_base is a private function and will be "
        "deprecated. Please use torch.distributed.all_gather_into_tensor "
        "instead."
    )
    return all_gather_into_tensor(output_tensor, input_tensor, group, async_op)


def all_gather_coalesced(
    output_tensor_lists, input_tensor_list, group=None, async_op=False
):
    """
    Gathers input tensors from the whole group in a list in a coalesced manner.

    Complex tensors are supported.

    Args:
        output_tensor_lists (list[list[Tensor]]): Output list. It should contain
            correctly-sized tensors to be used for output of the collective.
        input_tensor_list (list[Tensor]): Tensors to be broadcast from
            current process. At least one tensor has to be non empty.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    Example:
        we have 2 process groups, 2 ranks.
        rank 0 passes:
            input_tensor_list = [[[1, 1], [1, 1]], [2], [3, 3]]
            output_tensor_lists =
               [[[[-1, -1], [-1, -1]], [-1], [-1, -1]],
                [[[-1, -1], [-1, -1]], [-1], [-1, -1]]]
        rank 1 passes:
            input_tensor_list = [[[3, 3], [3, 3]], [5], [1, 1]]
            output_tensor_lists =
               [[[[-1, -1], [-1, -1]], [-1], [-1, -1]],
                [[[-1, -1], [-1, -1]], [-1], [-1, -1]]]
        both rank 0 and 1 get:
            output_tensor_lists =
               [[[1, 1], [1, 1]], [2], [3, 3]],
                [[3, 3], [3, 3]], [5], [1, 1]]].

    WARNING: at this time individual shape checking is not implemented across nodes.
    For example, if the rank 0 node passes [torch.rand(4), torch.rand(2)] and the
    rank 1 node passes [torch.rand(2), torch.rand(2), torch.rand(2)], the
    all_gather_coalesced operation will proceed without complaint and return
    erroneous outputs. This lack of shape checking results in significant
    performance improvements but users of this function should take extra care
    to ensure that each node passes in tensors whose shapes match across nodes.
    """
    warnings.warn(
        "torch.distributed.all_gather_coalesced will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#collective-functions"
    )
    # We only check basic compatibility with C++ params here, C++ code will
    # do shape and type checking.
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather_coalesced")
        return
    _check_tensor_list(input_tensor_list, "tensor_list")
    _ensure_all_tensors_same_dtype(input_tensor_list)
    if not isinstance(output_tensor_lists, list):
        raise RuntimeError(
            "Invalid function argument: " "output_tensor_lists should be a list"
        )
    for output_tensor_list in output_tensor_lists:
        _check_tensor_list(output_tensor_list, "output_tensor_lists")
        _ensure_all_tensors_same_dtype(output_tensor_list)

    output_tensor_lists = [
        [t if not t.is_complex() else torch.view_as_real(t) for t in l]
        for l in output_tensor_lists
    ]
    input_tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in input_tensor_list
    ]

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allgather_coalesced(output_tensor_lists, input_tensor_list)
    else:
        work = group.allgather_coalesced(output_tensor_lists, input_tensor_list)

    if async_op:
        return work.get_future()
    else:
        work.wait()


def _validate_output_list_for_rank(my_rank, dst, gather_list):
    if dst == my_rank:
        if not gather_list:
            raise ValueError(
                "Argument ``gather_list`` must be specified on destination rank."
            )
    elif gather_list:
        raise ValueError(
            "Argument ``gather_list`` must NOT be specified "
            "on non-destination ranks."
        )


def gather(tensor, gather_list=None, dst=0, group=None, async_op=False):
    """
    Gathers a list of tensors in a single process.

    Args:
        tensor (Tensor): Input tensor.
        gather_list (list[Tensor], optional): List of appropriately-sized
            tensors to use for gathered data (default is None, must be specified
            on the destination rank)
        dst (int, optional): Destination rank (default is 0)
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")

    # Parameter ``gather_list`` may be left unspecified on non-dst ranks.
    if gather_list:
        _check_tensor_list(gather_list, "gather_list")
    else:
        gather_list = []
    _ensure_all_tensors_same_dtype(tensor, gather_list)

    if _rank_not_in_group(group):
        _warn_not_in_group("gather")
        return

    my_rank = get_rank()
    _validate_output_list_for_rank(my_rank, dst, gather_list)
    output_tensors = [gather_list] if dst == my_rank else []
    input_tensors = [tensor]

    opts = GatherOptions()
    opts.rootRank = dst

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.gather(output_tensors, input_tensors, opts)
    else:
        group_dst_rank = get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.gather(output_tensors, input_tensors, opts)

    if async_op:
        return work
    else:
        work.wait()


def scatter(tensor, scatter_list=None, src=0, group=None, async_op=False):
    """
    Scatters a list of tensors to all processes in a group.

    Each process will receive exactly one tensor and store its data in the
    ``tensor`` argument.

    Complex tensors are supported.

    Args:
        tensor (Tensor): Output tensor.
        scatter_list (list[Tensor]): List of tensors to scatter (default is
            None, must be specified on the source rank)
        src (int): Source rank (default is 0)
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    .. note:: Note that all Tensors in scatter_list must have the same size.

    Example::
        >>> # xdoctest: +SKIP("need process group init")
        >>> # Note: Process group initialization omitted on each rank.
        >>> import torch.distributed as dist
        >>> tensor_size = 2
        >>> t_ones = torch.ones(tensor_size)
        >>> t_fives = torch.ones(tensor_size) * 5
        >>> output_tensor = torch.zeros(tensor_size)
        >>> if dist.get_rank() == 0:
        >>>     # Assumes world_size of 2.
        >>>     # Only tensors, all of which must be the same size.
        >>>     scatter_list = [t_ones, t_fives]
        >>> else:
        >>>     scatter_list = None
        >>> dist.scatter(output_tensor, scatter_list, src=0)
        >>> # Rank i gets scatter_list[i]. For example, on rank 1:
        >>> output_tensor
        tensor([5., 5.])

    """
    _check_single_tensor(tensor, "tensor")

    # Parameter ``scatter_list`` may be left unspecified on non-src ranks.
    if scatter_list:
        _check_tensor_list(scatter_list, "scatter_list")
    else:
        scatter_list = []
    _ensure_all_tensors_same_dtype(tensor, scatter_list)

    if _rank_not_in_group(group):
        _warn_not_in_group("scatter")
        return
    scatter_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in scatter_list
    ]
    tensor = tensor if not tensor.is_complex() else torch.view_as_real(tensor)

    my_rank = get_rank()
    if src == my_rank:
        if not scatter_list:
            raise ValueError(
                "Argument ``scatter_list`` must be specified " "on source rank."
            )
        input_tensors = [scatter_list]
        output_tensors = [tensor]
    else:
        if scatter_list:
            raise ValueError(
                "Argument ``scatter_list`` must NOT be specified "
                "on non-source ranks."
            )
        input_tensors = []
        output_tensors = [tensor]

    opts = ScatterOptions()
    opts.rootRank = src

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.scatter(output_tensors, input_tensors, opts)
    else:
        group_src_rank = get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.scatter(output_tensors, input_tensors, opts)

    if async_op:
        return work
    else:
        work.wait()


def reduce_scatter_multigpu(
    output_tensor_list, input_tensor_lists, op=ReduceOp.SUM, group=None, async_op=False
):
    """
    Reduce and scatter a list of tensors to the whole group.  Only nccl backend
    is currently supported.

    Each tensor in ``output_tensor_list`` should reside on a separate GPU, as
    should each list of tensors in ``input_tensor_lists``.

    Args:
        output_tensor_list (List[Tensor]): Output tensors (on different GPUs)
            to receive the result of the operation.

            Note that ``len(output_tensor_list)`` needs to be the same for all
            the distributed processes calling this function.

        input_tensor_lists (List[List[Tensor]]): Input lists.  It should
            contain correctly-sized tensors on each GPU to be used for input of
            the collective, e.g. ``input_tensor_lists[i]`` contains the
            reduce_scatter input that resides on the GPU of
            ``output_tensor_list[i]``.

            Note that each element of ``input_tensor_lists`` has the size of
            ``world_size * len(output_tensor_list)``, since the function
            scatters the result from every single GPU in the group.  To
            interpret each element of ``input_tensor_lists[i]``, note that
            ``output_tensor_list[j]`` of rank k receives the reduce-scattered
            result from ``input_tensor_lists[i][k * world_size + j]``

            Also note that ``len(input_tensor_lists)``, and the size of each
            element in ``input_tensor_lists`` (each element is a list,
            therefore ``len(input_tensor_lists[i])``) need to be the same for
            all the distributed processes calling this function.

        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group.

    """
    warnings.warn(
        "torch.distributed.reduce_scatter_multigpu will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#multi-gpu-collective-functions"
    )

    if _rank_not_in_group(group):
        _warn_not_in_group("reduce_scatter_multigpu")
        return

    opts = ReduceScatterOptions()
    opts.reduceOp = op

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.reduce_scatter(output_tensor_list, input_tensor_lists, opts)
    else:
        work = group.reduce_scatter(output_tensor_list, input_tensor_lists, opts)

    if async_op:
        return work
    else:
        work.wait()


def reduce_scatter(output, input_list, op=ReduceOp.SUM, group=None, async_op=False):
    """
    Reduces, then scatters a list of tensors to all processes in a group.

    Args:
        output (Tensor): Output tensor.
        input_list (list[Tensor]): List of tensors to reduce and scatter.
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group.

    """
    _check_single_tensor(output, "output")
    _check_tensor_list(input_list, "input_list")
    _ensure_all_tensors_same_dtype(output, input_list)
    if _rank_not_in_group(group):
        _warn_not_in_group("reduce_scatter")
        return

    opts = ReduceScatterOptions()
    opts.reduceOp = op

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.reduce_scatter([output], [input_list], opts)
    else:
        work = group.reduce_scatter([output], [input_list], opts)

    if async_op:
        return work
    else:
        work.wait()


def reduce_scatter_tensor(output, input, op=ReduceOp.SUM, group=None, async_op=False):
    """
    Reduces, then scatters a tensor to all ranks in a group.

    Args:
        output (Tensor): Output tensor. It should have the same size across all
            ranks.
        input (Tensor): Input tensor to be reduced and scattered. Its size
            should be output tensor size times the world size. The input tensor
            can have one of the following shapes:
            (i) a concatentation of the output tensors along the primary
            dimension, or
            (ii) a stack of the output tensors along the primary dimension.
            For definition of "concatenation", see ``torch.cat()``.
            For definition of "stack", see ``torch.stack()``.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group.

    Examples:
        >>> # xdoctest: +SKIP("need process group init")
        >>> # All tensors below are of torch.int64 dtype and on CUDA devices.
        >>> # We have two ranks.
        >>> device = torch.device(f'cuda:{rank}')
        >>> tensor_out = torch.zeros(2, dtype=torch.int64, device=device)
        >>> # Input in concatenation form
        >>> tensor_in = torch.arange(world_size * 2, dtype=torch.int64, device=device)
        >>> tensor_in
        tensor([0, 1, 2, 3], device='cuda:0') # Rank 0
        tensor([0, 1, 2, 3], device='cuda:1') # Rank 1
        >>> dist.reduce_scatter_tensor(tensor_out, tensor_in)
        >>> tensor_out
        tensor([0, 2], device='cuda:0') # Rank 0
        tensor([4, 6], device='cuda:1') # Rank 1
        >>> # Input in stack form
        >>> tensor_in = torch.reshape(tensor_in, (world_size, 2))
        >>> tensor_in
        tensor([[0, 1],
                [2, 3]], device='cuda:0') # Rank 0
        tensor([[0, 1],
                [2, 3]], device='cuda:1') # Rank 1
        >>> dist.reduce_scatter_tensor(tensor_out, tensor_in)
        >>> tensor_out
        tensor([0, 2], device='cuda:0') # Rank 0
        tensor([4, 6], device='cuda:1') # Rank 1

    .. warning::
        The Gloo backend does not support this API.

    """
    _check_single_tensor(output, "output")
    _check_single_tensor(input, "input")

    if _rank_not_in_group(group):
        _warn_not_in_group("reduce_scatter_tensor")
        return

    opts = ReduceScatterOptions()
    opts.reduceOp = op

    if group is None:
        default_pg = _get_default_group()
        work = default_pg._reduce_scatter_base(output, input, opts)
    else:
        work = group._reduce_scatter_base(output, input, opts)

    if async_op:
        return work
    else:
        work.wait()


def _reduce_scatter_base(output, input, op=ReduceOp.SUM, group=None, async_op=False):
    """
    Reduces, then scatters a flattened tensor to all processes in a group.

    Args:
        output (Tensor): Output tensor.
        input (Tensor): Input tensor that is of size output tensor size times world size
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group.

    .. warning::
        `_reduce_scatter_base` is a private function. Users should use
        `reduce_scatter_tensor` instead.

    """
    warnings.warn(
        "torch.distributed._reduce_scatter_base is a private function and will "
        "be deprecated. Please use torch.distributed.reduce_scatter_tensor "
        "instead."
    )
    return reduce_scatter_tensor(output, input, op, group, async_op)


def all_to_all_single(
    output,
    input,
    output_split_sizes=None,
    input_split_sizes=None,
    group=None,
    async_op=False,
):
    """
    Each process splits input tensor and then scatters the split list
    to all processes in a group. Then concatenate the received tensors from all
    the processes in the group and return single output tensor.

    Complex tensors are supported.

    Args:
        output (Tensor): Gathered cancatenated output tensor.
        input (Tensor): Input tensor to scatter.
        output_split_sizes: (list[Int], optional): Output split sizes for dim 0
            if specified None or empty, dim 0 of ``output`` tensor must divide
            equally by ``world_size``.
        input_split_sizes: (list[Int], optional): Input split sizes for dim 0
            if specified None or empty, dim 0 of ``input`` tensor must divide
            equally by ``world_size``.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group.

    .. warning::
        `all_to_all_single` is experimental and subject to change.

    Examples:
        >>> # xdoctest: +SKIP("Undefined rank")
        >>> input = torch.arange(4) + rank * 4
        >>> input
        tensor([0, 1, 2, 3])     # Rank 0
        tensor([4, 5, 6, 7])     # Rank 1
        tensor([8, 9, 10, 11])   # Rank 2
        tensor([12, 13, 14, 15]) # Rank 3
        >>> output = torch.empty([4], dtype=torch.int64)
        >>> dist.all_to_all_single(output, input)
        >>> output
        tensor([0, 4, 8, 12])    # Rank 0
        tensor([1, 5, 9, 13])    # Rank 1
        tensor([2, 6, 10, 14])   # Rank 2
        tensor([3, 7, 11, 15])   # Rank 3

        >>> # Essentially, it is similar to following operation:
        >>> scatter_list = list(input.chunk(world_size))
        >>> gather_list  = list(output.chunk(world_size))
        >>> for i in range(world_size):
        >>>   dist.scatter(gather_list[i], scatter_list if i == rank else [], src = i)

        >>> # Another example with uneven split
        >>> input
        tensor([0, 1, 2, 3, 4, 5])                                       # Rank 0
        tensor([10, 11, 12, 13, 14, 15, 16, 17, 18])                     # Rank 1
        tensor([20, 21, 22, 23, 24])                                     # Rank 2
        tensor([30, 31, 32, 33, 34, 35, 36])                             # Rank 3
        >>> input_splits
        [2, 2, 1, 1]                                                     # Rank 0
        [3, 2, 2, 2]                                                     # Rank 1
        [2, 1, 1, 1]                                                     # Rank 2
        [2, 2, 2, 1]                                                     # Rank 3
        >>> output_splits
        [2, 3, 2, 2]                                                     # Rank 0
        [2, 2, 1, 2]                                                     # Rank 1
        [1, 2, 1, 2]                                                     # Rank 2
        [1, 2, 1, 1]                                                     # Rank 3
        >>> output = ...
        >>> dist.all_to_all_single(output, input, output_splits, input_splits)
        >>> output
        tensor([ 0,  1, 10, 11, 12, 20, 21, 30, 31])                     # Rank 0
        tensor([ 2,  3, 13, 14, 22, 32, 33])                             # Rank 1
        tensor([ 4, 15, 16, 23, 34, 35])                                 # Rank 2
        tensor([ 5, 17, 18, 24, 36])                                     # Rank 3


        >>> # Another example with tensors of torch.cfloat type.
        >>> input = torch.tensor([1+1j, 2+2j, 3+3j, 4+4j], dtype=torch.cfloat) + 4 * rank * (1+1j)
        >>> input
        tensor([1+1j, 2+2j, 3+3j, 4+4j])                                # Rank 0
        tensor([5+5j, 6+6j, 7+7j, 8+8j])                                # Rank 1
        tensor([9+9j, 10+10j, 11+11j, 12+12j])                          # Rank 2
        tensor([13+13j, 14+14j, 15+15j, 16+16j])                        # Rank 3
        >>> output = torch.empty([4], dtype=torch.int64)
        >>> dist.all_to_all_single(output, input)
        >>> output
        tensor([1+1j, 5+5j, 9+9j, 13+13j])                              # Rank 0
        tensor([2+2j, 6+6j, 10+10j, 14+14j])                            # Rank 1
        tensor([3+3j, 7+7j, 11+11j, 15+15j])                            # Rank 2
        tensor([4+4j, 8+8j, 12+12j, 16+16j])                            # Rank 3
    """
    if _rank_not_in_group(group):
        _warn_not_in_group("all_to_all_single")
        return

    opts = AllToAllOptions()
    _check_single_tensor(output, "output")
    _check_single_tensor(input, "input")
    _ensure_all_tensors_same_dtype(output, input)

    if input.is_complex():
        input = torch.view_as_real(input)
    if output.is_complex():
        output = torch.view_as_real(output)

    output_split_sizes = [] if output_split_sizes is None else output_split_sizes
    input_split_sizes = [] if input_split_sizes is None else input_split_sizes

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.alltoall_base(
            output, input, output_split_sizes, input_split_sizes, opts
        )
    else:
        work = group.alltoall_base(
            output, input, output_split_sizes, input_split_sizes, opts
        )

    if async_op:
        return work
    else:
        work.wait()


def all_to_all(output_tensor_list, input_tensor_list, group=None, async_op=False):
    """
    Each process scatters list of input tensors to all processes in a group and
    return gathered list of tensors in output list.

    Complex tensors are supported.

    Args:
        output_tensor_list (list[Tensor]): List of tensors to be gathered one
            per rank.
        input_tensor_list (list[Tensor]): List of tensors to scatter one per rank.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group.

    .. warning::
        `all_to_all` is experimental and subject to change.

    Examples:
        >>> # xdoctest: +SKIP("Undefined rank")
        >>> input = torch.arange(4) + rank * 4
        >>> input = list(input.chunk(4))
        >>> input
        [tensor([0]), tensor([1]), tensor([2]), tensor([3])]     # Rank 0
        [tensor([4]), tensor([5]), tensor([6]), tensor([7])]     # Rank 1
        [tensor([8]), tensor([9]), tensor([10]), tensor([11])]   # Rank 2
        [tensor([12]), tensor([13]), tensor([14]), tensor([15])] # Rank 3
        >>> output = list(torch.empty([4], dtype=torch.int64).chunk(4))
        >>> dist.all_to_all(output, input)
        >>> output
        [tensor([0]), tensor([4]), tensor([8]), tensor([12])]    # Rank 0
        [tensor([1]), tensor([5]), tensor([9]), tensor([13])]    # Rank 1
        [tensor([2]), tensor([6]), tensor([10]), tensor([14])]   # Rank 2
        [tensor([3]), tensor([7]), tensor([11]), tensor([15])]   # Rank 3

        >>> # Essentially, it is similar to following operation:
        >>> scatter_list = input
        >>> gather_list  = output
        >>> for i in range(world_size):
        >>>   dist.scatter(gather_list[i], scatter_list if i == rank else [], src = i)

        >>> input
        tensor([0, 1, 2, 3, 4, 5])                                       # Rank 0
        tensor([10, 11, 12, 13, 14, 15, 16, 17, 18])                     # Rank 1
        tensor([20, 21, 22, 23, 24])                                     # Rank 2
        tensor([30, 31, 32, 33, 34, 35, 36])                             # Rank 3
        >>> input_splits
        [2, 2, 1, 1]                                                     # Rank 0
        [3, 2, 2, 2]                                                     # Rank 1
        [2, 1, 1, 1]                                                     # Rank 2
        [2, 2, 2, 1]                                                     # Rank 3
        >>> output_splits
        [2, 3, 2, 2]                                                     # Rank 0
        [2, 2, 1, 2]                                                     # Rank 1
        [1, 2, 1, 2]                                                     # Rank 2
        [1, 2, 1, 1]                                                     # Rank 3
        >>> input = list(input.split(input_splits))
        >>> input
        [tensor([0, 1]), tensor([2, 3]), tensor([4]), tensor([5])]                   # Rank 0
        [tensor([10, 11, 12]), tensor([13, 14]), tensor([15, 16]), tensor([17, 18])] # Rank 1
        [tensor([20, 21]), tensor([22]), tensor([23]), tensor([24])]                 # Rank 2
        [tensor([30, 31]), tensor([32, 33]), tensor([34, 35]), tensor([36])]         # Rank 3
        >>> output = ...
        >>> dist.all_to_all(output, input)
        >>> output
        [tensor([0, 1]), tensor([10, 11, 12]), tensor([20, 21]), tensor([30, 31])]   # Rank 0
        [tensor([2, 3]), tensor([13, 14]), tensor([22]), tensor([32, 33])]           # Rank 1
        [tensor([4]), tensor([15, 16]), tensor([23]), tensor([34, 35])]              # Rank 2
        [tensor([5]), tensor([17, 18]), tensor([24]), tensor([36])]                  # Rank 3

        >>> # Another example with tensors of torch.cfloat type.
        >>> input = torch.tensor([1+1j, 2+2j, 3+3j, 4+4j], dtype=torch.cfloat) + 4 * rank * (1+1j)
        >>> input = list(input.chunk(4))
        >>> input
        [tensor([1+1j]), tensor([2+2j]), tensor([3+3j]), tensor([4+4j])]            # Rank 0
        [tensor([5+5j]), tensor([6+6j]), tensor([7+7j]), tensor([8+8j])]            # Rank 1
        [tensor([9+9j]), tensor([10+10j]), tensor([11+11j]), tensor([12+12j])]      # Rank 2
        [tensor([13+13j]), tensor([14+14j]), tensor([15+15j]), tensor([16+16j])]    # Rank 3
        >>> output = list(torch.empty([4], dtype=torch.int64).chunk(4))
        >>> dist.all_to_all(output, input)
        >>> output
        [tensor([1+1j]), tensor([5+5j]), tensor([9+9j]), tensor([13+13j])]          # Rank 0
        [tensor([2+2j]), tensor([6+6j]), tensor([10+10j]), tensor([14+14j])]        # Rank 1
        [tensor([3+3j]), tensor([7+7j]), tensor([11+11j]), tensor([15+15j])]        # Rank 2
        [tensor([4+4j]), tensor([8+8j]), tensor([12+12j]), tensor([16+16j])]        # Rank 3

    """
    if _rank_not_in_group(group):
        _warn_not_in_group("all_to_all")
        return

    opts = AllToAllOptions()
    _check_tensor_list(output_tensor_list, "output_tensor_list")
    _check_tensor_list(input_tensor_list, "input_tensor_list")
    _ensure_all_tensors_same_dtype(output_tensor_list, input_tensor_list)

    input_tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in input_tensor_list
    ]
    output_tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in output_tensor_list
    ]

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.alltoall(output_tensor_list, input_tensor_list, opts)
    else:
        work = group.alltoall(output_tensor_list, input_tensor_list, opts)

    if async_op:
        return work
    else:
        work.wait()


def barrier(group=GroupMember.WORLD, async_op=False, device_ids=None):

    """
    Synchronizes all processes.

    This collective blocks processes until the whole group enters this function,
    if async_op is False, or if async work handle is called on wait().

    Args:
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        async_op (bool, optional): Whether this op should be an async op
        device_ids ([int], optional): List of device/GPU ids.
                                      Valid only for NCCL backend.

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group
    """
    if _rank_not_in_group(group):
        _warn_not_in_group("barrier")
        return

    opts = BarrierOptions()
    if device_ids is not None:
        if get_backend(group) != Backend.NCCL:
            raise RuntimeError(
                "Function argument device_ids not supported "
                "for the selected backend {}".format(get_backend(group))
            )
        if isinstance(device_ids, list):
            opts.device_ids = device_ids
        else:
            raise RuntimeError(
                "Invalid function argument: " "device_ids type should be List[int]"
            )

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.barrier(opts=opts)
    else:
        work = group.barrier(opts=opts)

    if async_op:
        return work
    else:
        work.wait()


def monitored_barrier(group=GroupMember.WORLD, timeout=None, wait_all_ranks=False):
    """
    Synchronizes all processes similar to ``torch.distributed.barrier``, but takes
    a configurable timeout and is able to report ranks that did not pass this
    barrier within that timeout. Specifically, for non-zero ranks, will block
    until a send/recv is processed from rank 0. Rank 0 will block until all send
    /recv from other ranks are processed, and will report failures for ranks
    that failed to respond in time. Note that if one rank does not reach the
    monitored_barrier (for example due to a hang), all other ranks would fail
    in monitored_barrier.

    This collective will block all processes/ranks in the group, until the
    whole group exits the function successfully, making it useful for debugging
    and synchronizing. However, it can have a performance impact and should only
    be used for debugging or scenarios that require full synchronization points
    on the host-side. For debugging purposees, this barrier can be inserted
    before the application's collective calls to check if any ranks are
    desynchronized.

    .. note:: Note that this collective is only supported with the GLOO backend.

    Args:
        group (ProcessGroup, optional): The process group to work on. If
            ``None``, the default process group will be used.
        timeout (datetime.timedelta, optional): Timeout for monitored_barrier.
            If ``None``, the default process group timeout will be used.
        wait_all_ranks (bool, optional): Whether to collect all failed ranks or
            not. By default, this is ``False`` and ``monitored_barrier`` on rank 0
            will throw on the first failed rank it encounters in order to fail
            fast. By setting ``wait_all_ranks=True`` ``monitored_barrier`` will
            collect all failed ranks and throw an error containing information
            about all failed ranks.

    Returns:
        ``None``.

    Example::
        >>> # xdoctest: +SKIP("need process group init")
        >>> # Note: Process group initialization omitted on each rank.
        >>> import torch.distributed as dist
        >>> if dist.get_rank() != 1:
        >>>     dist.monitored_barrier() # Raises exception indicating that
        >>> # rank 1 did not call into monitored_barrier.
        >>> # Example with wait_all_ranks=True
        >>> if dist.get_rank() == 0:
        >>>     dist.monitored_barrier(wait_all_ranks=True) # Raises exception
        >>> # indicating that ranks 1, 2, ... world_size - 1 did not call into
        >>> # monitored_barrier.
    """

    # Need to call rank not in group before using the group, otherwise
    # "Invalid process group" error is raised.
    if _rank_not_in_group(group):
        _warn_not_in_group("monitored_barrier")
        return

    if get_backend(group) != Backend.GLOO:
        raise RuntimeError("monitored_barrier is only implemented for GLOO backend.")

    if timeout is None:
        timeout = default_pg_timeout

    group_to_use = _get_default_group() if group is None else group
    return group_to_use.monitored_barrier(timeout, wait_all_ranks=wait_all_ranks)


def _create_process_group_wrapper(
    wrapped_pg: ProcessGroup,
    store_prefix: str,
    store: Store,
    rank: int,
    world_size: int,
    timeout: timedelta = default_pg_timeout,
):
    # Create a separate prefix store for the helper process group.
    prefix = f"{PG_WRAPPER_STORE_PREFIX}:{store_prefix}"
    store = PrefixStore(prefix, store)
    helper_pg = ProcessGroupGloo(store, rank, world_size, timeout=timeout)
    # Wrap the underlying pg with ProcessGroupWrapper.
    wrapped_pg = _ProcessGroupWrapper(wrapped_pg, helper_pg)
    return wrapped_pg

def new_group(ranks=None, timeout=default_pg_timeout, backend=None, pg_options=None):
    """
    Creates a new distributed group.

    This function requires that all processes in the main group (i.e. all
    processes that are part of the distributed job) enter this function, even
    if they are not going to be members of the group. Additionally, groups
    should be created in the same order in all processes.

    .. warning::
        Using multiple process groups with the ``NCCL`` backend concurrently
        is not safe and the user should perform explicit synchronization in
        their application to ensure only one process group is used at a time.
        This means collectives from one process group should have completed
        execution on the device (not just enqueued since CUDA execution is
        async) before collectives from another process group are enqueued.
        See `Using multiple NCCL communicators concurrently <https://docs.nvid
        ia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#using
        -multiple-nccl-communicators-concurrently>`_ for more details.

    Args:
        ranks (list[int]): List of ranks of group members. If ``None``, will be
            set to all ranks. Default is ``None``.
        timeout (timedelta, optional): Timeout for operations executed against
            the process group. Default value equals 30 minutes.
            This is applicable for the ``gloo`` backend. For ``nccl``, this is
            applicable only if the environment variable ``NCCL_BLOCKING_WAIT``
            or ``NCCL_ASYNC_ERROR_HANDLING`` is set to 1. When
            ``NCCL_BLOCKING_WAIT`` is set, this is the duration for which the
            process will block and wait for collectives to complete before
            throwing an exception. When ``NCCL_ASYNC_ERROR_HANDLING`` is set,
            this is the duration after which collectives will be aborted
            asynchronously and the process will crash. ``NCCL_BLOCKING_WAIT``
            will provide errors to the user which can be caught and handled,
            but due to its blocking nature, it has a performance overhead. On
            the other hand, ``NCCL_ASYNC_ERROR_HANDLING`` has very little
            performance overhead, but crashes the process on errors. This is
            done since CUDA execution is async and it is no longer safe to
            continue executing user code since failed async NCCL operations
            might result in subsequent CUDA operations running on corrupted
            data. Only one of these two environment variables should be set.
        backend (str or Backend, optional): The backend to use. Depending on
            build-time configurations, valid values are ``gloo`` and ``nccl``.
            By default uses the same backend as the global group. This field
            should be given as a lowercase string (e.g., ``"gloo"``), which can
            also be accessed via :class:`Backend` attributes (e.g.,
            ``Backend.GLOO``). If ``None`` is passed in, the backend
            corresponding to the default process group will be used. Default is
            ``None``.
        pg_options (ProcessGroupOptions, optional): process group options
            specifying what additional options need to be passed in during
            the construction of specific process groups. i.e. for the ``nccl``
            backend, ``is_high_priority_stream`` can be specified so that
            process group can pick up high priority cuda streams.

    Returns:
        A handle of distributed group that can be given to collective calls.
    """

    global _pg_group_ranks

    default_pg = _get_default_group()
    default_backend, default_store = _pg_map[default_pg]
    global_rank = default_pg.rank()
    global_world_size = default_pg.size()

    # Default to the same backend as the global process group
    # if the backend is not specified.
    if not backend:
        backend = default_backend

    # checks the input ranks
    if ranks is not None:
        ranks = sorted(ranks)
        group_world_size = len(ranks)
        if group_world_size > global_world_size:
            raise RuntimeError(
                "the new group's world size should be less or "
                "equal to the world size set by "
                "init_process_group"
            )
        # check ranks' sanity
        for rank in ranks:
            if rank < 0 or rank >= global_world_size:
                raise RuntimeError(
                    "The new group's rank should be within the "
                    "the world_size set by init_process_group"
                )
        if global_rank in ranks:
            group_rank = ranks.index(global_rank)
        else:
            group_rank = None
    else:
        ranks = list(range(global_world_size))
        group_world_size = global_world_size
        group_rank = global_rank

    backend = Backend(backend)
    pg = _new_process_group_helper(
        group_world_size,
        group_rank,
        ranks,
        backend,
        default_store,
        pg_options=pg_options,
        timeout=timeout,
    )

    # Create the global rank to group rank mapping
    _pg_group_ranks[pg] = {
        global_rank: group_rank for group_rank, global_rank in enumerate(ranks)
    }

    # barrier at the end to ensure that once we return from this method, all
    # process groups including global variables are updated correctly on all
    # ranks.
    if backend == Backend.MPI:
        # MPI doesn't have store.
        barrier()
    else:
        # Use store based barrier here since barrier() used a bunch of
        # default devices and messes up NCCL internal state.
        _store_based_barrier(global_rank, default_store, timeout)
        # Set sequence numbers for gloo and nccl process groups.
        if pg != GroupMember.NON_GROUP_MEMBER and get_backend(pg) in [
            Backend.GLOO,
            Backend.NCCL,
        ]:
            pg._set_sequence_number_for_group()

    return pg


def new_subgroups(
    group_size=None,
    group=None,
    timeout=default_pg_timeout,
    backend=None,
    pg_options=None,
):
    """
    Creates GPU subgroups of equal size. By default, it creates intra-machine subgroups,
    where each of which contains all the ranks of a machine, based on the assumption
    that each machine has the same number of CUDA devices.

    This is a convenience API that calls ``new_group`` to generate multiple subgroups.
    It requires that all processes in the main group (i.e. all
    processes that are part of the distributed job) enter this function, even
    if they are not going to be members of the group.

    .. warning::
        This API only works when CUDA is available.

    .. warning::
        If ``group_size`` is passed in, the world size must be divisible by ``group_size``.
        If no ``group_size`` is passed in, and not all the machines have the same number
        of devices, the subgroup division will be different across nodes and can cause
        unexpected behaviors.

    .. warning::
        Using multiple process groups with the ``NCCL`` backend concurrently
        is not safe and the user should perform explicit synchronization in
        their application to ensure only one process group is used at a time.
        This means collectives from one process group should have completed
        execution on the device (not just enqueued since CUDA execution is
        async) before collectives from another process group are enqueued.
        See `Using multiple NCCL communicators concurrently <https://docs.nvid
        ia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#using
        -multiple-nccl-communicators-concurrently>`_ for more details.

    Args:
        group_size (int, optional): The size of each subgroup. If ``None``,
            the default subgroup size is equal to the number of devices on each machine,
            based on the assumption that each machine has exactly the same
            number of devices. Default is ``None``.
        timeout (timedelta, optional): Timeout for operations executed against
            the process group. Default value equals 30 minutes.
            This is applicable for the ``gloo`` backend. For ``nccl``, this is
            applicable only if the environment variable ``NCCL_BLOCKING_WAIT``
            or ``NCCL_ASYNC_ERROR_HANDLING`` is set to 1. When
            ``NCCL_BLOCKING_WAIT`` is set, this is the duration for which the
            process will block and wait for collectives to complete before
            throwing an exception. When ``NCCL_ASYNC_ERROR_HANDLING`` is set,
            this is the duration after which collectives will be aborted
            asynchronously and the process will crash. ``NCCL_BLOCKING_WAIT``
            will provide errors to the user which can be caught and handled,
            but due to its blocking nature, it has a performance overhead. On
            the other hand, ``NCCL_ASYNC_ERROR_HANDLING`` has very little
            performance overhead, but crashes the process on errors. This is
            done since CUDA execution is async and it is no longer safe to
            continue executing user code since failed async NCCL operations
            might result in subsequent CUDA operations running on corrupted
            data. Only one of these two environment variables should be set.
        backend (str or Backend, optional): The backend to use. Depending on
            build-time configurations, valid values are ``gloo`` and ``nccl``.
            By default uses the same backend as the global group. This field
            should be given as a lowercase string (e.g., ``"gloo"``), which can
            also be accessed via :class:`Backend` attributes (e.g.,
            ``Backend.GLOO``). If ``None`` is passed in, the backend
            corresponding to the default process group will be used. Default is
            ``None``.
        pg_options (ProcessGroupOptions, optional): process group options
            specifying what additional options need to be passed in during
            the construction of specific process groups. i.e. for the ``nccl``
            backend, ``is_high_priority_stream`` can be specified so that
            process group can pick up high priority cuda streams.

    Returns:
        The subgroup containing the current rank, and all the subgroups used for cleanup.

    Examples:
        >>> # Create intra-machine subgroups.
        >>> # xdoctest: +SKIP("need process group init")
        >>> cur_subgroup, subgroups = dist.new_subgroups()
        >>> # Allreduce within the machine.
        >>> rank = dist.get_rank()
        >>> tensor = torch.ones(1, device=rank) * rank
        >>> dist.all_reduce(tensor, group=cur_subgroup)
        >>> tensor
        tensor([8])     # Assume 8 is the number of CUDA devices per machine.
        >>> # Cleanup.
        >>> for subgroup in subgroups:
        >>>     dist.destroy_process_group(subgroup)
    """
    if not torch.cuda.is_available():
        raise ValueError("Subgroups can only be created when CUDA is available")

    if group_size is None:
        group_size = torch.cuda.device_count()
    world_size = get_world_size()
    if world_size < group_size:
        raise ValueError("The arg 'group_size' must not exceed the world size")
    if world_size % group_size != 0:
        raise ValueError("The world size must be divisible by 'group_size'")

    subgroups = []
    cur_subgroup = None

    for subgroup_id in range(world_size // group_size):
        start_rank = subgroup_id * group_size
        end_rank = start_rank + group_size
        ranks_in_subgroup = list(range(start_rank, end_rank))
        subgroup = new_group(
            ranks=ranks_in_subgroup,
            timeout=timeout,
            backend=backend,
            pg_options=pg_options,
        )
        subgroups.append(subgroup)

        rank = get_rank()
        if rank in ranks_in_subgroup:
            cur_subgroup = subgroup
            logger.info(
                "Rank {} is assigned to subgroup {}".format(rank, ranks_in_subgroup)
            )

    return cur_subgroup, subgroups


def new_subgroups_by_enumeration(
    ranks_per_subgroup_list,
    timeout=default_pg_timeout,
    backend=None,
    pg_options=None,
):
    """
    Creates GPU subgroups by dividing the global world, where the division is specified by
    a nested list of ranks. The subgroups cannot have overlap, and some ranks may not have
    to be in any subgroup.

    This is a convenience API that calls ``new_group`` to generate multiple subgroups.
    It requires that all processes in the main group (i.e. all
    processes that are part of the distributed job) enter this function, even
    if they are not going to be members of the group.

    .. warning::
        Using multiple process groups with the ``NCCL`` backend concurrently
        is not safe and the user should perform explicit synchronization in
        their application to ensure only one process group is used at a time.
        This means collectives from one process group should have completed
        execution on the device (not just enqueued since CUDA execution is
        async) before collectives from another process group are enqueued.
        See `Using multiple NCCL communicators concurrently <https://docs.nvid
        ia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#using
        -multiple-nccl-communicators-concurrently>`_ for more details.

    Args:
        ranks_per_subgroup_list (list[list[int]]): A nested list of ranks of
            group members.
        timeout (timedelta, optional): Timeout for operations executed against
            the process group. Default value equals 30 minutes.
            This is applicable for the ``gloo`` backend. For ``nccl``, this is
            applicable only if the environment variable ``NCCL_BLOCKING_WAIT``
            or ``NCCL_ASYNC_ERROR_HANDLING`` is set to 1. When
            ``NCCL_BLOCKING_WAIT`` is set, this is the duration for which the
            process will block and wait for collectives to complete before
            throwing an exception. When ``NCCL_ASYNC_ERROR_HANDLING`` is set,
            this is the duration after which collectives will be aborted
            asynchronously and the process will crash. ``NCCL_BLOCKING_WAIT``
            will provide errors to the user which can be caught and handled,
            but due to its blocking nature, it has a performance overhead. On
            the other hand, ``NCCL_ASYNC_ERROR_HANDLING`` has very little
            performance overhead, but crashes the process on errors. This is
            done since CUDA execution is async and it is no longer safe to
            continue executing user code since failed async NCCL operations
            might result in subsequent CUDA operations running on corrupted
            data. Only one of these two environment variables should be set.
         backend (str or Backend, optional): The backend to use. Depending on
             build-time configurations, valid values are ``gloo`` and ``nccl``.
             By default uses the same backend as the global group. This field
             should be given as a lowercase string (e.g., ``"gloo"``), which can
             also be accessed via :class:`Backend` attributes (e.g.,
             ``Backend.GLOO``). If ``None`` is passed in, the backend
             corresponding to the default process group will be used. Default is
             ``None``.
        pg_options (ProcessGroupOptions, optional): process group options
            specifying what additional options need to be passed in during
            the construction of specific process groups. i.e. for the ``nccl``
            backend, ``is_high_priority_stream`` can be specified so that
            process group can pick up high priority cuda streams.

    Returns:
        The subgroup containing the current rank, and all the subgroups used for cleanup.

    Examples:
        >>> # Create two subgroups, where each has 2 processes.
        >>> # xdoctest: +SKIP("need process group init")
        >>> cur_subgroup, subgroups = dist.new_subgroups(ranks=[[0, 2], [1, 3]])
        >>> rank = dist.get_rank()
        >>> tensor = torch.ones(1, device=rank) * rank
        >>> dist.all_reduce(tensor, group=cur_subgroup)
        >>> tensor
        tensor([2])     # Subgroup 0: ranks 0 and 2
        tensor([4])     # Subgroup 1: ranks 1 and 3
    """
    if not torch.cuda.is_available():
        raise ValueError("Subgroups can only be created when CUDA is available")
    if ranks_per_subgroup_list is None or len(ranks_per_subgroup_list) == 0:
        raise ValueError("The arg 'ranks_per_subgroup_list' cannot be empty")

    world_size = get_world_size()

    subgroups = []
    cur_subgroup = None
    # Create a mapping from rank to subgroup to check if there is any subgroup overlap.
    rank_to_ranks_dict = {}  # type: ignore[var-annotated]
    for ranks in ranks_per_subgroup_list:
        subgroup = new_group(
            ranks=ranks,
            timeout=timeout,
            backend=backend,
            pg_options=pg_options,
        )
        subgroups.append(subgroup)
        my_rank = get_rank()
        for rank in ranks:
            if rank in rank_to_ranks_dict:
                raise ValueError(
                    "Rank {} has appeared in both subgroup {} and {}".format(
                        rank, rank_to_ranks_dict[rank], ranks
                    )
                )
            rank_to_ranks_dict[rank] = ranks
            if my_rank == rank:
                cur_subgroup = subgroup
                logger.info("Rank {} is assigned to subgroup {}".format(rank, ranks))

    return cur_subgroup, subgroups