1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
|
import collections
import copy
import functools
from typing import (
Any,
Dict,
Iterable,
Iterator,
List,
NamedTuple,
Optional,
Sequence,
Tuple,
Union,
cast,
)
import torch
import torch.distributed as dist
# Import the entire FSDP file to avoid circular imports
import torch.distributed.fsdp.fully_sharded_data_parallel as FSDP
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.flat_param import FlatParameter, FlatParamHandle
from torch.distributed.fsdp._fsdp_extensions import _ext_chunk_tensor
def sorted_items(dictionary: Dict[str, Any]) -> Iterator[Tuple[str, Any]]:
keys = sorted(dictionary.keys())
for k in keys:
yield k, dictionary[k]
class _ConsolidatedOptimState:
"""
This holds the consolidated optimizer state on the target rank. Positive-
dimension tensor state is communicated across ranks, while zero-dimension
tensor state and non-tensor state is taken directly from the target rank.
PyTorch version 1.12 moved to using zero-dimension tensors for scalar
values, but user implemented optimizers may still use float (i.e. a
non-tensor). Thus, we support both and handle them identically.
Attributes:
tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension
tensor state name to the unsharded flattened tensor representing
the state.
zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero-
dimension tensor state name to its value.
non_tensor_state (Dict[str, Any]): Mapping from non-tensor state
name to its value.
"""
tensor_state: Dict[str, torch.Tensor] = {}
zero_dim_tensor_state: Dict[str, torch.Tensor] = {}
non_tensor_state: Dict[str, Any] = {}
class _PosDimTensorInfo(NamedTuple):
"""
Meatadata for positive-dimension tensors used internally for
:meth:`scatter_full_optim_state_dict`.
Attributes:
shape (torch.Size): Sharded tensor shape (which is equal to the
unsharded tensor shape if the tensor is optimizer state for a
non-FSDP parameter and is hence not sharded).
dtype (torch.dtype): Data type of the tensor.
"""
shape: torch.Size
dtype: torch.dtype
class _OptimStateKey(NamedTuple):
"""
This represents an optimizer state key that may be used commonly across
ranks. It is based on the unflattened parameter names rather than parameter
IDs to make it indepenendent of each rank's own optimizer construction.
"""
unflat_param_names: Tuple[str, ...]
is_flat_param: bool
def _unflatten_optim_state(
flat_param: FlatParameter,
flat_param_state: Dict[str, Any],
fsdp_module,
to_save: bool,
shard_state: bool,
) -> List[Dict[str, Any]]:
"""
Unflattens the optimizer state, consisting of the "state" part and the
"param_groups" part. Unflattening the "state" part involves consolidating
the state on the target rank and remapping from flattened to unflattened
parameter IDs, and the "param_groups" part only involves remapping from
flattened to unflattened parameter IDs.
Args:
flat_param (FlatParameter): The flattened parameter.
flat_param_state (Dict[str, Any]): Entry for the flattened parameter
in the "state" part of the optimizer state dict.
fsdp_module (FullyShardedDataParallel): FSDP module that owns
``flat_param``, i.e. holds it in ``self.params``.
to_save (bool): Whether to save the state on this rank.
Returns:
List[Dict[str, Any]]: A :class:`list` holding the entries in the
"state" part of the optimizer state dict corresponding to the
unflattened parameters comprising the flattened parameter
``flat_param`` if on the target rank or an empty :class:`list`
otherwise. The final optimizer state dict will need to map these
entries using the proper unflattened parameter IDs.
"""
consolidated_state = _communicate_optim_state(
flat_param,
flat_param_state,
fsdp_module,
to_save,
)
unflat_param_state = (
_unflatten_communicated_optim_state(
fsdp_module,
flat_param,
consolidated_state,
shard_state,
)
if to_save or shard_state
else []
)
if to_save:
for optim_state in unflat_param_state:
for key in list(optim_state.keys()):
state = optim_state[key]
if isinstance(state, torch.Tensor):
optim_state[key] = state.cpu()
return unflat_param_state
def _communicate_optim_state(
flat_param: FlatParameter,
flat_param_state: Dict[str, Any],
fsdp_module,
to_save: bool,
) -> _ConsolidatedOptimState:
"""
Communicates the optimizer state for a flattened parameter ``flat_param``
across ranks so that the target rank holds the entire non-sharded optimizer
state.
If ``N`` is the number of tensor optimizer states in the optimizer state
dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1``
otherwise (where the plus 1 comes from all-gathering the padding per rank).
Args:
flat_param (FlatParameter): The flattened parameter.
flat_param_state (Dict[str, Any]): The entry in the "state" part of the
optimizer state dict corresponding to the flattened parameter.
fsdp_module (FullyShardedDataParallel): FSDP module that owns
``flat_param``, i.e. holds it in ``self.params``.
to_save (bool): Whether to save the state on this rank.
Returns:
ConsolidatedOptimState: Consolidated optimizer state for
``flat_param``; the state is not populated for non-target ranks.
"""
state = _ConsolidatedOptimState()
tensor_state, zero_dim_tensor_state, non_tensor_state = (
state.tensor_state,
state.zero_dim_tensor_state,
state.non_tensor_state,
)
group = fsdp_module.process_group
for state_name, value in sorted_items(flat_param_state):
# Positive-dimension tensor state: communicate across ranks
if torch.is_tensor(value) and value.dim() > 0:
# If the parameter is not sharded, then neither is the
# positive-dimension tensor state, so no need to communicate it --
# we take the target rank's value
if (
fsdp_module.world_size == 1
or fsdp_module.sharding_strategy == FSDP.ShardingStrategy.NO_SHARD
):
tensor_state[state_name] = value
continue
if not value.is_cuda:
value = value.to(fsdp_module.compute_device)
# Assume that positive-dimension tensor optimizer state
# has the same shape as the sharded flattened parameter
buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined]
tensor_buffer = value.new_zeros(*buffer_size)
dist._all_gather_base(tensor_buffer, value, group=group)
torch.cuda.synchronize()
if to_save:
unpadded_numel = flat_param._unpadded_unsharded_size.numel() # type: ignore[attr-defined]
tensor_state[state_name] = tensor_buffer[:unpadded_numel]
# Zero-dimension tensor state and non-tensor state: take this rank's
# value directly
elif to_save:
if _is_zero_dim_tensor(value):
zero_dim_tensor_state[state_name] = value
else:
non_tensor_state[state_name] = value
return state
def _unflatten_communicated_optim_state(
fsdp_module,
flat_param: FlatParameter,
state: _ConsolidatedOptimState,
shard_state: bool,
) -> List[Dict[str, Any]]:
"""
Unflattens the communicated optimizer state (given by ``tensor_state``,
``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flattened
parameter ``flat_param``. This should only be called on the target rank.
Args:
flat_param (FlatParameter): The flattened parameter.
state (_ConsolidatedOptimState): Consolidated optimizer state.
Returns:
List[Dict[str, Any]]: A :class:`list` holding the entries in the
"state" part of the optimizer state dict corresponding to the
unflattened parameters comprising the flattened parameter
``flat_param``. The final optimizer state dict will need to map these
entries using the proper unflattened parameter IDs.
"""
unflat_param_state: List[Dict[str, Any]] = []
flat_param_views: Dict[str, Iterator] = {}
num_unflat_params = flat_param._num_params
tensor_state, zero_dim_tensor_state, non_tensor_state = (
state.tensor_state,
state.zero_dim_tensor_state,
state.non_tensor_state,
)
for _ in range(num_unflat_params):
unflat_state_param = {}
# Add positive-dimension tensor state: unflatten with views
for state_name, flat_tensor in sorted_items(tensor_state):
views_generated = state_name in flat_param_views
if not views_generated:
views = FlatParamHandle._get_unflat_views(flat_param, flat_tensor)
flat_param_views[state_name] = views
else:
views = flat_param_views[state_name]
optim_state: Union[torch.Tensor, ShardedTensor] = next(views)
if shard_state:
optim_state = _ext_chunk_tensor(
optim_state,
fsdp_module.rank,
fsdp_module.world_size,
torch.cuda.device_count(),
fsdp_module.process_group,
)
unflat_state_param[state_name] = optim_state
# Add zero-dimension tensor state: take the target rank's value
for state_name, zero_dim_tensor in sorted_items(zero_dim_tensor_state):
unflat_state_param[state_name] = zero_dim_tensor
# Add non-tensor state: take the target rank's value
for state_name, non_tensor in sorted_items(non_tensor_state):
unflat_state_param[state_name] = non_tensor
unflat_param_state.append(unflat_state_param)
return unflat_param_state
def _flatten_optim_state_dict(
optim_state_dict: Dict[str, Any],
model: torch.nn.Module,
shard_state: bool,
) -> Dict[str, Any]:
"""
Flattens the full optimizer state dict, still keying by unflattened
parameter names. If ``shard_state=True``, then FSDP-managed
``FlatParameter`` 's optimizer states are sharded, and otherwise, they are
kept unsharded.
Returns:
Dict[str, Any]: The flattened optimizer state dict.
"""
unflat_osd = optim_state_dict
if "state" not in unflat_osd or "param_groups" not in unflat_osd:
raise ValueError(
'`optim_state_dict` must have the keys "state" and '
'"param_groups" to be a valid optimizer state dict'
)
flat_param_to_fsdp_module = _get_flat_param_to_fsdp_module(model)
param_to_unflat_param_names = FSDP._get_param_to_unflat_param_names(model)
# Construct the "state" part
flat_osd_state: Dict[_OptimStateKey, Any] = {}
unflat_osd_state = unflat_osd["state"]
for param, unflat_param_names in param_to_unflat_param_names.items():
if isinstance(param, FlatParameter): # flatten FSDP parameters' states
assert param in flat_param_to_fsdp_module, (
"Check the `flat_param_to_fsdp_module` construction\n" f"param: {param}"
)
fsdp_module = flat_param_to_fsdp_module[param]
flat_state = _flatten_optim_state(
unflat_osd_state,
unflat_param_names,
fsdp_module,
param,
shard_state,
)
key = _OptimStateKey(tuple(unflat_param_names), True)
flat_osd_state[key] = flat_state
else: # do not flatten non-FSDP parameters' states
assert len(unflat_param_names) == 1
unflat_param_name = unflat_param_names[0]
if unflat_param_name not in unflat_osd_state:
# The state dict may not have an entry for a parameter if it
# was not passed into the optimizer (e.g. if it is not an
# FSDP-managed parameter)
continue
key = _OptimStateKey(tuple(unflat_param_names), False)
flat_osd_state[key] = copy.copy(unflat_osd_state[unflat_param_name])
# Construct the "param_groups" part -- copy as is since it will be
# rekeyed later according to the target rank's optimizer
flat_osd_param_groups = copy.deepcopy(unflat_osd["param_groups"])
return {"state": flat_osd_state, "param_groups": flat_osd_param_groups}
def _flatten_optim_state(
unflat_osd_state: Dict[str, Dict[str, Any]],
unflat_param_names: List[str],
fsdp_module,
flat_param: FlatParameter,
shard_state: bool,
) -> Dict[str, Any]:
"""
Flattens the optimizer state in ``full_optim_state_dict`` for a single
flattened parameter ``flat_param`` in ``fsdp_module`` corresponding to
the unflattened parameter names in ``unflat_param_names``.
Args:
unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the
optimizer state dict corresponding to the unflattened parameters.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the flattened parameter
``flat_param``.
fsdp_module (FullyShardedDataParallel): FSDP module owning the
flattened parameter.
flat_param (FlatParameter): The flattened parameter.
shard_state (bool): Whether to shard flattened positive-dimension
tensor state; if ``False``, then the full flattened tensor is
kept in the returned :class:`dict.
Returns:
Dict[str, Any]: A :class:`dict` mapping state names to their values for
a particular flattened parameter. The sharded optimizer state dict's
"state" part will map a key to this returned value.
"""
num_unflat_params = len(unflat_param_names)
assert num_unflat_params > 0, (
"Expects at least one unflattened parameter corresponding to the "
"flattened parameter"
)
unflat_param_shapes = flat_param._shapes
num_unflat_param_shapes = len(unflat_param_shapes)
assert (
num_unflat_params == num_unflat_param_shapes
), f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}"
# Check if these unflattened parameters have any optimizer state
has_state = [
bool(unflat_param_name in unflat_osd_state)
for unflat_param_name in unflat_param_names
]
# If none of the unflattened parameters comprising this flattened parameter
# have any state, then we do not want an entry in the optimizer state dict
if not any(has_state):
return {} # no need to flatten any state
# There may still be some unflattened parameters with state and some
# without
unflat_param_states = [
_gather_state_dict(
unflat_osd_state[unflat_param_name], pg=fsdp_module.process_group
)
if unflat_param_name in unflat_osd_state
else None
for unflat_param_name in unflat_param_names
]
# Check that the unflattened parameters have the same state names
state_names = None
for unflat_param_state in unflat_param_states:
if unflat_param_state is None:
continue
if state_names is None:
state_names = set(unflat_param_state.keys())
else:
if state_names != set(unflat_param_state.keys()):
raise ValueError(
"Differing optimizer state names for the unflattened "
f"parameters: {unflat_param_names}"
)
assert state_names is not None
# Flatten the state
flat_state: Dict[str, Any] = {}
for state_name in state_names:
state_values = [
unflat_param_state[state_name] if unflat_param_state is not None else None
for unflat_param_state in unflat_param_states
]
non_none_state_values = [v for v in state_values if v is not None]
are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True
for v in non_none_state_values:
are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0
are_zero_dim_tensors &= _is_zero_dim_tensor(v)
are_non_tensors &= not torch.is_tensor(v)
types = set(type(v) for v in non_none_state_values)
if len(types) != 1 or not (
are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors
):
raise ValueError(
f"Differing optimizer state types for state {state_name}, "
f"values {non_none_state_values}, and unflattened parameter "
f"names {unflat_param_names}"
)
if are_pos_dim_tensors:
flat_tensor = _flatten_tensor_optim_state(
state_name,
state_values,
unflat_param_names,
unflat_param_shapes,
flat_param,
)
if shard_state:
# Shard the flattened tensor immediately to minimize max memory
# usage
sharded_flat_tensor, _ = FlatParamHandle._get_shard(
flat_tensor,
fsdp_module.rank,
fsdp_module.world_size,
)
flat_state[state_name] = sharded_flat_tensor
else:
flat_state[state_name] = flat_tensor
elif are_zero_dim_tensors:
flat_state[state_name] = _flatten_zero_dim_tensor_optim_state(
state_name,
state_values,
unflat_param_names,
)
else:
assert are_non_tensors
flat_state[state_name] = _flatten_non_tensor_optim_state(
state_name,
state_values,
unflat_param_names,
)
return flat_state
def _flatten_tensor_optim_state(
state_name: str,
pos_dim_tensors: List[torch.Tensor],
unflat_param_names: List[str],
unflat_param_shapes: Sequence[torch.Size],
flat_param: FlatParameter,
) -> torch.Tensor:
"""
Flattens the positive-dimension tensor optimizer state given by the values
``tensors`` for the state ``state_name`` for a single flattened parameter
``flat_param`` corresponding to the unflattened parameter names
``unflat_param_names`` and unflatted parameter shapes
``unflat_param_shapes``. This flattens each unflattened parameter's tensor
state into one tensor.
NOTE: We use zero tensors for any unflattened parameters without state
since some value is required to fill those entries. This assumes that the
zero tensor is mathematically equivalent to having no state, which is true
for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all
optimizers.
Args:
state_name (str): Optimizer state name.
pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor
optimizer state values for the unflattened parameters corresponding
to the single flattened parameter.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the single flattened parameter.
unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes
corresponding to the single flattened parameter.
flat_param (FlatParameter): The flattened parameter.
Returns:
torch.Tensor: A flattened tensor containing the optimizer state
corresponding to ``state_name`` constructed by concatenating the
unflattened parameter tensor states in ``pos_dim_tensors`` (using zero
tensors for any unflattened parameters without the state).
"""
non_none_tensors = [t for t in pos_dim_tensors if t is not None]
# Check that all are tensors with the same dtype
dtypes = set(t.dtype for t in non_none_tensors)
if len(dtypes) != 1:
raise ValueError(
"All unflattened parameters comprising a single flattened "
"parameter must have positive-dimension tensor state with the "
f"same dtype but got dtypes {dtypes} for state {state_name} and "
f"unflattened parameter names {unflat_param_names}"
)
dtype = next(iter(dtypes))
# Check that each tensor state matches its parameter's shape
for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes):
if tensor is None and len(shape) == 0:
raise ValueError("Flattening a zero-dimension parameter is not supported")
elif tensor is not None and tensor.shape != shape:
raise ValueError(
"Tensor optimizer state does not have same shape as its "
f"parameter: {tensor.shape} {shape}"
)
# Flatten the tensor states: we do not need to add any padding since the
# flattened optimizer state tensor sharded via `_get_shard()`, which pads
# the shard as needed (just like for the flattened parameter)
cpu_device = torch.device("cpu")
tensors = [
torch.flatten(state_value.to(cpu_device))
if state_value is not None
else torch.flatten(
torch.zeros(
size=shape,
dtype=dtype,
device=cpu_device,
)
)
for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes)
]
flat_tensor = torch.cat(tensors)
flat_param_shape = flat_param._unpadded_unsharded_size # type: ignore[attr-defined]
assert flat_tensor.shape == flat_param_shape, (
f"tensor optim state: {flat_tensor.shape} "
f"flattened parameter: {flat_param_shape}"
)
return flat_tensor
def _flatten_zero_dim_tensor_optim_state(
state_name: str,
zero_dim_tensors: List[torch.Tensor],
unflat_param_names: List[str],
) -> torch.Tensor:
"""
Flattens the zero-dimension tensor optimizer state given by the values
``zero_dim_tensors`` for the state ``state_name`` for a single flattened
parameter corresponding to the unflattened parameter names
``unflat_param_names`` by enforcing that all tensors are the same and using
that common value.
NOTE: The requirement that the tensors are the same across all unflattened
parameters comprising the flattened parameter is needed to maintain the
invariant that FSDP performs the same computation as its non-sharded
equivalent. This means that none of the unflattened parameters can be
missing this state since imposing a value may differ from having no value.
For example, for Adam's "step", no value means maximum bias correction,
while having some positive value means less bias correction.
Args:
state_name (str): Optimizer state name.
zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state
for the unflattened parameters corresponding to the single
flattened parameter.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the single flattened parameter.
Returns:
torch.Tensor: A zero-dimensional tensor giving the value of the state
``state_name`` for all unflattened parameters corresponding to the
names ``unflat_param_names``.
"""
non_none_tensors = [t for t in zero_dim_tensors if t is not None]
# Enforce that all have the same value and dtype
values_set = set(t.item() if t is not None else None for t in zero_dim_tensors)
dtypes = set(t.dtype if t is not None else None for t in zero_dim_tensors)
if (
len(non_none_tensors) != len(zero_dim_tensors)
or len(values_set) != 1
or len(dtypes) != 1
):
raise ValueError(
"All unflattened parameters comprising a single flattened "
"parameter must have scalar state with the same value and dtype "
f"but got values {values_set} and dtypes {dtypes} for state "
f"{state_name} and unflattened parameter names "
f"{unflat_param_names}"
)
value = next(iter(values_set))
dtype = next(iter(dtypes))
return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))
def _flatten_non_tensor_optim_state(
state_name: str,
non_tensors: List[Any],
unflat_param_names: List[str],
) -> Any:
"""
Flattens the non-tensor optimizer state given by the values ``non_tensors``
for the state ``state_name`` for a single flattened parameter corresponding
to the unflattened parameter names ``unflat_param_names`` by enforcing that
all values are the same and using that common value.
See the note in :func:`_flatten_zero_dim_tensor_optim_state`.
Args:
state_name (str): Optimizer state name.
non_tensors (List[Any]): Non-tensor optimizer state for the unflattened
parameters corresponding to the single flattened parameter.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the single flattened parameter.
Returns:
Any: A non-tensor giving the value of the state ``state_name`` for all
unflattened parameters corresponding to the names
``unflat_param_names``.
"""
non_none_non_tensors = [nt for nt in non_tensors if nt is not None]
# Enforce that all have the same value (same type already checked)
non_tensor_set = set(non_tensors)
if len(non_none_non_tensors) != len(non_tensors) or len(non_tensor_set) != 1:
raise ValueError(
"All unflattened parameters comprising a single flattened "
"parameter must have scalar state with the same value and dtype "
f"but got values {non_tensor_set} for state {state_name} and "
f"unflattened parameter names {unflat_param_names}"
)
non_tensor = next(iter(non_tensor_set))
return non_tensor
def _process_pos_dim_tensor_state(
flat_optim_state_dict: Dict[str, Any],
world_size: int,
) -> Dict[str, Any]:
"""
Processes positive-dimension tensor states in ``flat_optim_state_dict`` by
replacing them with metadata. This is done so the processed optimizer state
dict can be broadcast from rank 0 to all ranks without copying those tensor
states, and thus, this is meant to only be called on rank 0.
Args:
flat_optim_state_dict (Dict[str, Any]): Flattened optimizer state dict
with the positive-dimension tensor states unsharded.
Returns:
Dict[str, Any]: The flattened optimizer state dict with positive-
dimension tensor states replaced by metadata.
"""
flat_osd = flat_optim_state_dict # alias
no_tensor_osd: Dict[str, Any] = {"state": {}}
for key, param_state in flat_osd["state"].items():
no_tensor_osd["state"][key] = {}
for state_name, value in sorted_items(param_state):
is_pos_dim_tensor_state = torch.is_tensor(value) and value.dim() > 0
if not is_pos_dim_tensor_state:
no_tensor_osd["state"][key][state_name] = value
continue
if key.is_flat_param: # FSDP parameter
sharded_size = FlatParamHandle._get_sharded_size(
value, rank=0, world_size=world_size
)
assert len(sharded_size) == 1, f"{sharded_size}"
info = _PosDimTensorInfo(sharded_size, value.dtype)
else: # non-FSDP parameter
info = _PosDimTensorInfo(value.shape, value.dtype)
no_tensor_osd["state"][key][state_name] = info
no_tensor_osd["param_groups"] = flat_osd["param_groups"]
return no_tensor_osd
def _broadcast_processed_optim_state_dict(
processed_optim_state_dict: Optional[Dict[str, Any]],
rank: int,
group,
) -> Dict[str, Any]:
"""
Broadcasts the processed optimizer state dict from rank 0 to all ranks.
Args:
processed_optim_state_dict (Optional[Dict[str, Any]]): The flattened
optimizer state dict with positive-dimension tensor states replaced
with metadata if on rank 0; ignored otherwise.
Returns:
Dict[str, Any]: The processed optimizer state dict.
"""
# Broadcast the two data structures rank 0 to all ranks
obj_list = [processed_optim_state_dict] if rank == 0 else [None]
dist.broadcast_object_list(obj_list, src=0, group=group)
processed_optim_state_dict = obj_list[0] # type: ignore[assignment]
assert processed_optim_state_dict is not None
# Keep zero-dimension tensors on CPU
return processed_optim_state_dict
def _broadcast_pos_dim_tensor_states(
processed_optim_state_dict: Dict[str, Any],
flat_optim_state_dict: Optional[Dict[str, Any]],
rank: int,
world_size: int,
group,
broadcast_device: torch.device,
) -> Dict[str, Any]:
"""
Takes ``processed_optim_state_dict``, which has metadata in place of
positive-dimension tensor states, and broadcasts those tensor states from
rank 0 to all ranks. For tensor states corresponding to FSDP parameters,
rank 0 shards the tensor and broadcasts shard-by-shard, and for tensor
states corresponding to non-FSDP parameters, rank 0 broadcasts the full
tensor.
Args:
processed_optim_state_dict (Dict[str, Any]): The flattened optimizer
state dict with positive-dimension tensor states replaced with
metadata; this should be returned by
:meth:`_process_pos_dim_tensor_state` and non-empty on all ranks.
flat_optim_state_dict (Optional[Dict[str, Any]]): The flattened
unsharded optimizer state dict with the actual positive-dimension
tensor states if on rank 0; ignored on nonzero ranks.
Returns:
Dict[str, Any]: The optimizer state dict with the positive-dimension
tensor state correctly populated via ``broadcast()`` s from rank 0.
"""
assert (
rank != 0 or flat_optim_state_dict is not None
), "Expects rank 0 to pass in the flattened optimizer state dict"
no_tensor_osd = processed_optim_state_dict # alias
flat_osd = flat_optim_state_dict # alias
for key, param_state in no_tensor_osd["state"].items():
for state_name, value in sorted_items(param_state):
is_pos_dim_tensor_state = isinstance(value, _PosDimTensorInfo)
if not is_pos_dim_tensor_state:
continue
if rank == 0:
assert flat_osd is not None
unsharded_tensor = flat_osd["state"][key][state_name]
else:
unsharded_tensor = None
shape, dtype = value.shape, value.dtype
if key.is_flat_param: # FSDP parameter
_broadcast_sharded_pos_dim_tensor_state(
unsharded_tensor,
param_state,
state_name,
shape,
dtype,
broadcast_device,
rank,
world_size,
group,
) # modify `param_state` destructively
else: # non-FSDP parameter
_broadcast_unsharded_pos_dim_tensor_state(
unsharded_tensor,
param_state,
state_name,
shape,
dtype,
broadcast_device,
rank,
group,
) # modify `param_state` destructively
return no_tensor_osd
def _broadcast_sharded_pos_dim_tensor_state(
unsharded_tensor: Optional[torch.Tensor],
param_state: Dict[str, Any],
state_name: str,
shape: torch.Size,
dtype: torch.dtype,
broadcast_device: torch.device,
rank: int,
world_size: int,
group,
) -> None:
"""
Broadcasts positive-dimension tensor state for the state ``state_name``
corresponding to an FSDP parameter shard-by-shard, only to be saved on the
relevant rank. This modifies ``param_state`` destructively.
Args:
unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor from which
to broadcast shards if on rank 0; ignored otherwise.
shape (torch.Size): Shape of the sharded tensor; same on all ranks.
"""
get_shard: Optional[functools.partial[Tuple[torch.Tensor, int]]] = None
if rank == 0:
assert (
unsharded_tensor is not None
), "Expects rank 0 to pass in the unsharded tensor"
get_shard = functools.partial(
FlatParamHandle._get_shard,
unsharded_tensor,
)
for target_rank in range(1, world_size):
if rank == 0:
assert get_shard is not None
sharded_tensor = get_shard(target_rank, world_size)[0].to(broadcast_device)
else:
sharded_tensor = torch.zeros(
shape,
requires_grad=False,
dtype=dtype,
device=broadcast_device,
)
dist.broadcast(sharded_tensor, src=0, group=group)
# Only keep the shard on the target rank and keep it on the broadcast
# device, which is typically GPU
if rank == target_rank:
param_state[state_name] = sharded_tensor
else:
del sharded_tensor
# Lastly, shard on rank 0
if rank != 0:
return
param_state[state_name] = get_shard(0, world_size)[0].to(broadcast_device) # type: ignore[misc]
def _broadcast_unsharded_pos_dim_tensor_state(
unsharded_tensor: Optional[torch.Tensor],
param_state: Dict[str, Any],
state_name: str,
shape: torch.Size,
dtype: torch.dtype,
broadcast_device: torch.device,
rank: int,
group,
) -> None:
"""
Broadcasts positive-dimension tensor state for the state ``state_name``
corresponding to an unsharded non-FSDP parameter from rank 0 to all ranks.
This modifies ``param_state`` destructively.
Args:
unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor to
broadcast if on rank 0; ignored otherwise.
"""
if rank == 0:
assert (
unsharded_tensor is not None
), "Expects rank 0 to pass in the unsharded tensor"
assert (
shape == unsharded_tensor.shape
), f"Shape mismatch: {shape} {unsharded_tensor.shape}"
assert (
dtype == unsharded_tensor.dtype
), f"dtype mismatch: {dtype} {unsharded_tensor.dtype}"
unsharded_tensor = unsharded_tensor.to(broadcast_device)
else:
unsharded_tensor = torch.zeros(
shape,
requires_grad=False,
dtype=dtype,
device=broadcast_device,
)
dist.broadcast(unsharded_tensor, src=0, group=group)
# Keep the tensor on the broadcast device, which is typically GPU
param_state[state_name] = unsharded_tensor
def _rekey_sharded_optim_state_dict(
sharded_osd: Dict[str, Any],
model: torch.nn.Module,
optim: torch.optim.Optimizer,
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[torch.nn.Parameter],
]
],
using_optim_input: bool,
) -> Dict[str, Any]:
"""
Rekeys the optimizer state dict from unflattened parameter names to
flattened parameter IDs according to the calling rank's ``optim``, which
may be different across ranks. In particular, the unflattened parameter
names are represented as :class:`_OptimStateKey` s.
"""
param_to_flat_param_id = (
_get_param_to_param_id_from_optim_input(model, optim_input)
if using_optim_input
else _get_param_to_param_id(optim)
)
param_to_unflat_param_names = FSDP._get_param_to_unflat_param_names(model)
# All parameter keys in `param_to_flat_param_id` should be in
# `param_to_unflat_param_names` -- strict inequality follows when not all
# parameters are passed to the optimizer
assert len(param_to_flat_param_id) <= len(param_to_unflat_param_names)
unflat_param_names_to_flat_param_id: Dict[Tuple[str, ...], int] = {} # for "state"
unflat_param_name_to_flat_param_id: Dict[str, int] = {} # for "param_groups"
for param, unflat_param_names in param_to_unflat_param_names.items():
if param not in param_to_flat_param_id:
# This parameter was not passed to the optimizer
continue
flat_param_id = param_to_flat_param_id[param]
unflat_param_names_to_flat_param_id[tuple(unflat_param_names)] = flat_param_id
for unflat_param_name in unflat_param_names:
unflat_param_name_to_flat_param_id[unflat_param_name] = flat_param_id
sharded_osd_state = sharded_osd["state"]
rekeyed_osd_state = {}
for key, param_state in sharded_osd_state.items():
flat_param_id = unflat_param_names_to_flat_param_id[key.unflat_param_names]
rekeyed_osd_state[flat_param_id] = param_state
rekeyed_osd_param_groups: List[Dict[str, Any]] = []
for unflat_param_group in sharded_osd["param_groups"]:
flat_param_group = copy.deepcopy(unflat_param_group)
flat_param_ids = sorted(
set(
unflat_param_name_to_flat_param_id[unflat_param_name]
for unflat_param_name in unflat_param_group["params"]
)
)
flat_param_group["params"] = flat_param_ids
rekeyed_osd_param_groups.append(flat_param_group)
return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups}
def _get_flat_param_to_fsdp_module(model: torch.nn.Module):
"""
Constructs a mapping from FSDP flattened parameters to their owning FSDP
modules and ensures that all FSDP modules are initialized.
Args:
model (torch.nn.model): Root module (which may or may not be a
:class:`FullyShardedDataParallel` instance).
Returns:
Dict[FlatParameter, FullyShardedDataParallel]: Mapping from FSDP
flattened parameters to their owning FSDP modules.
"""
flat_param_to_fsdp_module = {}
for module in model.modules():
if isinstance(module, FSDP.FullyShardedDataParallel):
module._lazy_init()
for param in module.params: # may have none
flat_param_to_fsdp_module[param] = module
return flat_param_to_fsdp_module
def _get_param_id_to_param(
optim: torch.optim.Optimizer,
):
"""
Constructs a mapping from parameter IDs to parameters. This may be used
both for models with ``FlatParameter`` s and without.
"""
param_id_to_param: List[nn.Parameter] = []
for param_group in optim.param_groups:
for param in param_group["params"]:
param_id_to_param.append(param)
return param_id_to_param
def _get_param_id_to_param_from_optim_input(
model: torch.nn.Module,
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[torch.nn.Parameter],
]
] = None,
) -> List[torch.nn.Parameter]:
"""
Constructs a mapping from parameter IDs to parameters. This may be used
both for models with ``FlatParameter`` s and without.
NOTE: This method is only preserved for backward compatibility. The method
:meth:`_get_param_id_to_param` is the preferred code path that does not
rely on ``optim_input``.
NOTE: We critically assume that, whether the optimizer input is a list of
parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
enumerates the parameter IDs in order. In other words, for a parameter list
input, the parameter IDs should be in that list order, and for a parameter
groups input, the parameter IDs should be in order within each parameter
group and in order across parameter groups.
Args:
model (torch.nn.Module): Model whose parameters are passed into the
optimizer.
optim_input (Optional[Union[List[Dict[str, Any]],
Iterable[torch.nn.Parameter]]]): Input passed into the optimizer
representing either a :class:`list` of parameter groups or an
iterable of parameters; if ``None``, then this method assumes the
input was ``model.parameters()``. (Default: ``None``)
Returns:
List[torch.nn.Parameter]: Mapping from parameter IDs to parameters,
where the parameter ID is implicitly the index in the :class:`list`.
"""
# Assume the standard case of passing `model.parameters()` to the optimizer
# if `optim_input` is not specified
if optim_input is None:
return list(model.parameters())
try:
params = list(optim_input)
except TypeError:
raise TypeError(
"Optimizer input should be an iterable of Tensors or dicts, "
f"but got {optim_input}"
)
if len(params) == 0:
raise ValueError("Optimizer input should not be empty")
# Check if the optimizer input represents tensors or parameter groups
all_tensors = True
all_dicts = True
for param in params:
all_tensors &= isinstance(param, torch.Tensor)
all_dicts &= isinstance(param, dict)
if not all_tensors and not all_dicts:
raise TypeError("Optimizer input should be an iterable of Tensors or dicts")
if all_tensors:
return params # type: ignore[return-value]
assert all_dicts
param_id_to_param = []
for param_group in params:
has_params_key = "params" in param_group # type: ignore[operator]
assert has_params_key, (
'A parameter group should map "params" to a list of the '
"parameters in the group"
)
for param in param_group["params"]: # type: ignore[index]
# Implicitly map `flat_param_id` (current length of the list) to
# `param`
param_id_to_param.append(param)
return param_id_to_param # type: ignore[return-value]
def _get_param_to_param_id(
optim: torch.optim.Optimizer,
) -> Dict[torch.nn.Parameter, int]:
"""Constructs the inverse mapping of :func:`_get_param_id_to_param`."""
param_id_to_param = _get_param_id_to_param(optim)
return {param: param_id for param_id, param in enumerate(param_id_to_param)}
def _get_param_to_param_id_from_optim_input(
model: torch.nn.Module,
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[torch.nn.Parameter],
]
] = None,
) -> Dict[torch.nn.Parameter, int]:
"""Constructs the inverse mapping of :func:`_get_param_id_to_param`."""
param_id_to_param = _get_param_id_to_param_from_optim_input(model, optim_input)
return {param: param_id for param_id, param in enumerate(param_id_to_param)}
def _get_unflat_to_flat_param_ids(
flat_to_unflat_param_ids: Dict[int, List[int]],
) -> List[int]:
"""
Inverts the mapping ``flat_to_unflat_param_ids`` to be from unflattened
parameter ID to flattened parameter ID, where the unflattened parameter ID
is the index in the returned :class:`list`. There may be multiple
unflattened parameter IDs mapping to the same flattened parameter ID.
Args:
flat_to_unflat_param_ids (Dict[int, List[int]]): A mapping from
flattened parameter ID to a :class:`list` of corresponding
unflattened parameter IDs.
Returns:
List[int]: A mapping from unflattened parameter ID to flattened
parameter ID, where the unflattened parameter ID is the index in the
:class:`list`.
"""
# Construct as a dict and then convert to list
unflat_to_flat_param_ids = {}
for flat_param_id, unflat_param_ids in flat_to_unflat_param_ids.items():
for unflat_param_id in unflat_param_ids:
assert unflat_param_id not in unflat_to_flat_param_ids, (
"`flat_to_unflat_param_ids` has the unflattened parameter "
f"ID {unflat_param_id} mapped to multiple flattened "
"parameter IDs"
)
unflat_to_flat_param_ids[unflat_param_id] = flat_param_id
num_unflat_param_ids = len(unflat_to_flat_param_ids)
unflat_param_ids_set = set(unflat_to_flat_param_ids.keys())
assert unflat_param_ids_set == set(range(num_unflat_param_ids)), (
"The set of unflattened parameter IDs should be {0, ..., "
+ str(num_unflat_param_ids - 1)
+ "} but got "
+ f"{unflat_param_ids_set}"
)
return [
unflat_to_flat_param_ids[unflat_param_id]
for unflat_param_id in range(num_unflat_param_ids)
]
def _is_zero_dim_tensor(x: Any) -> bool:
return torch.is_tensor(x) and x.dim() == 0
def _optim_state_dict(
model: torch.nn.Module,
optim: torch.optim.Optimizer,
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[torch.nn.Parameter],
]
],
rank0_only: bool,
shard_state: bool,
group: Optional[dist.ProcessGroup],
using_optim_input: bool,
) -> Dict[str, Any]:
"""
Consolidates the optimizer state and returns it as a :class:`dict`
following the convention of :meth:`torch.optim.Optimizer.state_dict`,
i.e. with keys ``"state"`` and ``"param_groups"``.
The flattened parameters in ``FSDP`` modules contained in ``model``
are mapped back to their unflattened parameters.
Args:
model (torch.nn.Module): Root module (which may or may not be a
:class:`FullyShardedDataParallel` instance) whose parameters
were passed into the optimizer ``optim``.
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
parameters.
rank0_only (bool): If ``True``, saves the populated :class:`dict`
only on rank 0; if ``False``, saves it on all ranks. (Default:
``True``)
shard_state (bool): If ``True``, shard and distribute all
non-zero-dimension states.
Returns:
Dict[str, Any]: A :class:`dict` containing the optimizer state for
``model`` 's original unflattened parameters and including keys
"state" and "param_groups" following the convention of
:meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=False``,
then nonzero ranks return an empty :class:`dict`.
"""
osd = optim.state_dict()
osd_state, osd_param_groups = osd["state"], osd["param_groups"]
rank = dist.get_rank(group)
to_save = not rank0_only or (rank == 0 or shard_state)
fsdp_osd: Dict = {"state": {}, "param_groups": []} if to_save else {}
fsdp_osd_state = fsdp_osd["state"] if to_save else None
# Construct the local mapping between unflattened parameter names
# (`_OptimStateKey`s) and parameter IDs and broadcast rank 0's mapping
param_to_unflat_param_names: Dict[
torch.nn.Parameter, List[str]
] = FSDP._get_param_to_unflat_param_names(model)
flat_param_id_to_param: List[torch.nn.Parameter] = (
_get_param_id_to_param_from_optim_input(model, optim_input)
if using_optim_input
else _get_param_id_to_param(optim)
)
optim_state_key_to_flat_param_id: Dict[_OptimStateKey, int] = {} # local
r0_flat_param_id_to_optim_state_key: Dict[
int, _OptimStateKey
] = collections.OrderedDict() # rank 0
for flat_param_id, param in enumerate(flat_param_id_to_param):
# Do not include parameters without state to avoid empty mappings
# just like in normal `torch.optim.Optimizer.state_dict()`
if flat_param_id not in osd_state:
continue
optim_state_key = _OptimStateKey(
unflat_param_names=tuple(param_to_unflat_param_names[param]),
is_flat_param=isinstance(param, FlatParameter),
)
if rank == 0:
r0_flat_param_id_to_optim_state_key[flat_param_id] = optim_state_key
optim_state_key_to_flat_param_id[optim_state_key] = flat_param_id
key_obj_list: List[Optional[Dict[int, _OptimStateKey]]] = (
[r0_flat_param_id_to_optim_state_key] if rank == 0 else [None]
)
dist.broadcast_object_list(key_obj_list, src=0, group=group)
assert key_obj_list[0] is not None
r0_flat_param_id_to_optim_state_key = key_obj_list[0]
# Ensure that all ranks have at least the optimizer states needed by
# rank 0's optimizer
missing_keys: List[_OptimStateKey] = []
for r0_optim_state_key in r0_flat_param_id_to_optim_state_key.values():
if r0_optim_state_key not in optim_state_key_to_flat_param_id:
# A parameter from rank 0's optimizer does not exist for this
# rank's optimizer
missing_keys.append(r0_optim_state_key)
continue
flat_param_id = optim_state_key_to_flat_param_id[r0_optim_state_key]
assert flat_param_id >= 0 and flat_param_id < len(
flat_param_id_to_param
), "Check the `flat_param_id_to_param` construction"
device = torch.device("cuda", torch.cuda.current_device())
num_missing = torch.tensor([len(missing_keys)], dtype=torch.int32, device=device)
dist.all_reduce(num_missing, group=group)
if num_missing.item() > 0:
obj_list = [None for _ in range(dist.get_world_size(group))]
dist.all_gather_object(obj_list, missing_keys, group=group)
error_msg = (
"FSDP currently requires each rank to have at least the "
"optimizer states needed by rank 0's optimizer but some ranks "
"are missing some of those states"
)
for rank, keys in enumerate(obj_list):
keys = cast(List[_OptimStateKey], keys)
if len(keys) > 0:
error_msg += (
f"\nRank {rank} is missing states for the parameters: "
f"{[key.unflat_param_names for key in keys]}"
)
raise RuntimeError(error_msg)
# Iterate in rank 0's flattened parameter ID order to ensure aligned
# all-gathers across ranks
flat_param_to_fsdp_module = _get_flat_param_to_fsdp_module(model)
for r0_optim_state_key in r0_flat_param_id_to_optim_state_key.values():
flat_param_id = optim_state_key_to_flat_param_id[r0_optim_state_key]
param = flat_param_id_to_param[flat_param_id]
if r0_optim_state_key.is_flat_param:
fsdp_module = flat_param_to_fsdp_module[param]
unflat_state = _unflatten_optim_state(
cast(FlatParameter, param),
osd_state[flat_param_id],
fsdp_module,
to_save,
shard_state,
)
if to_save:
assert len(unflat_state) == len(r0_optim_state_key.unflat_param_names)
for unflat_param_name, unflat_param_state in zip(
r0_optim_state_key.unflat_param_names,
unflat_state,
):
fsdp_osd_state[unflat_param_name] = unflat_param_state
elif to_save:
assert len(r0_optim_state_key.unflat_param_names) == 1
unflat_param_name = r0_optim_state_key.unflat_param_names[0]
fsdp_osd_state[unflat_param_name] = copy.copy(osd_state[flat_param_id])
for state_name, value in sorted_items(fsdp_osd_state[unflat_param_name]):
if torch.is_tensor(value):
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
if not to_save:
return {}
# Handle the "param_groups" part of the optimizer state dict
fsdp_osd_param_groups = fsdp_osd["param_groups"] # alias
for flat_param_group in osd_param_groups:
unflat_param_group = copy.deepcopy(flat_param_group)
param_group_params = [
flat_param_id_to_param[flat_param_id]
for flat_param_id in flat_param_group["params"]
]
nested_unflat_param_names = [
param_to_unflat_param_names[param] for param in param_group_params
]
unflat_param_group["params"] = [
unflat_param_name
for unflat_param_names in nested_unflat_param_names
for unflat_param_name in unflat_param_names
] # flatten the list of lists
fsdp_osd_param_groups.append(unflat_param_group)
return fsdp_osd
|