1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
import bisect
import itertools
import math
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch.distributed import distributed_c10d
from torch.distributed._shard.sharded_tensor import (
Shard,
ShardedTensor,
ShardedTensorMetadata,
TensorProperties,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardingSpec,
ShardMetadata,
)
def _sharding_spec_to_offsets(
sharding_spec: ShardingSpec, tensor_numel: int, world_size: int
) -> List[int]:
r"""
Translates the sharding spec to a list of offsets along dim 0. If the
sharding spec is ChunkShardingSpec, only the ``dim`` is used and the
placement is not used.
"""
offsets: List[int] = []
if isinstance(sharding_spec, EnumerableShardingSpec):
for shard in sharding_spec.shards:
offsets.append(shard.shard_offsets[0])
elif isinstance(sharding_spec, ChunkShardingSpec):
assert sharding_spec.dim == 0
chunk_size = math.ceil(tensor_numel / world_size)
if chunk_size == 1:
offsets = [
rank if rank < tensor_numel else tensor_numel
for rank in range(world_size)
]
else:
offsets = [chunk_size if rank > 0 else 0 for rank in range(world_size)]
offsets = list(itertools.accumulate(offsets))
else:
raise ValueError(f"Un-recognized sharding spec type {type(sharding_spec)}.")
return offsets
def _offsets_to_split_sizes(
input_offsets: List[int],
output_offsets: List[int],
tensor_numel: int,
world_size: int,
my_rank: int,
) -> Tuple[List[int], List[int]]:
r"""
Given the shard offsets for each rank of the input tensor and output tensor,
this API returns the corresponding split sizes that can be passed to
all_to_all_single().
"""
def _get_interval(offsets):
if my_rank != world_size - 1:
return offsets[my_rank], offsets[my_rank + 1] - 1
else:
return offsets[my_rank], tensor_numel - 1
def _offsets_to_sizes(offsets, begin, end):
sizes = []
for i, offset in enumerate(offsets):
next_offset = offsets[i + 1] if i < len(offsets) - 1 else end + 1
sizes.append(
(next_offset - offset)
- max(begin - offset, 0)
- max(next_offset - end - 1, 0)
)
return sizes
def _convert(from_offsets, to_offsets, split_sizes):
begin, end = _get_interval(from_offsets)
to_begin_rank = bisect.bisect(to_offsets, begin) - 1
to_end_rank = bisect.bisect(to_offsets, end) - 1
_split_sizes = _offsets_to_sizes(
to_offsets[to_begin_rank : to_end_rank + 1], begin, end
)
split_sizes[to_begin_rank : to_end_rank + 1] = _split_sizes
input_split_sizes = [0 for _ in range(world_size)]
output_split_sizes = [0 for _ in range(world_size)]
_convert(input_offsets, output_offsets, input_split_sizes)
_convert(output_offsets, input_offsets, output_split_sizes)
return input_split_sizes, output_split_sizes
def _reshard_flatten_tensor(
input_tensor: ShardedTensor,
output_spec: ShardingSpec,
world_size: int,
my_rank: int,
device: torch.device,
process_group: Optional[dist.ProcessGroup],
) -> torch.Tensor:
"""
Resharded a sharded flatten tensor, this is used by FSDP to do sharded
state_dict. But the functionaility is not supported by ShardedTensor.
This API is designed to be used for FSDP; therefore this API supports only
1-D ShardedTensor (hence the naming, reshard_flatten_tensor).
This API uses the ChunkShardingSpec and EnumerableShardingSpec from
torch.distributed.sharding_spec but ignores the placement field in
ChunkShardingSpec, as the placement requires the callees understand the
number of GPUs per node. The API simply uses the semantics of the sharding
specs.
Args:
input_tensor (ShardedTensor): the original ShardedTensor. Must be 1D.
output_spec (ShardingSpec): the sharding spect for the output tensor.
world_size (int): total trainer count.
my_rank (int): the rank for this trainer.
Returns:
The local shard for the new ShardedTensor.
"""
input_spec = input_tensor.sharding_spec()
size = input_tensor.size()
if isinstance(size, int):
raise ValueError("The input tensor has no dimensions.")
tensor_numel = size.numel()
input_offsets = _sharding_spec_to_offsets(input_spec, tensor_numel, world_size)
output_offsets = _sharding_spec_to_offsets(output_spec, tensor_numel, world_size)
input_split_sizes, output_split_sizes = _offsets_to_split_sizes(
input_offsets, output_offsets, tensor_numel, world_size, my_rank
)
output_size = sum(output_split_sizes)
local_shard = torch.empty(output_size, dtype=input_tensor.dtype, device=device)
dist.all_to_all_single(
local_shard,
input_tensor.local_shards()[0].tensor,
input_split_sizes=input_split_sizes,
output_split_sizes=output_split_sizes,
group=process_group,
)
return local_shard
def _all_gather_sharded_tensor(
sharded_tensor: ShardedTensor, pg: Optional[dist.ProcessGroup] = None
) -> torch.Tensor:
if pg is None:
pg = distributed_c10d._get_default_group()
world_size = dist.get_world_size(pg)
shards = sharded_tensor.local_shards()
dim_0_size = sharded_tensor.size()[0] # type: ignore[index]
tensor_numel = sharded_tensor.size().numel() # type: ignore[union-attr]
chunk_size = math.ceil(dim_0_size / world_size) * tensor_numel // dim_0_size
cuda_device = torch.device("cuda", torch.cuda.current_device())
if shards:
local_tensor = shards[0].tensor.flatten()
if not local_tensor.is_cuda:
move_to_cpu = torch.ones(1, device=cuda_device)
local_tensor = local_tensor.cuda()
else:
move_to_cpu = torch.zeros(1, device=cuda_device)
num_padding = chunk_size - local_tensor.numel()
if num_padding > 0:
local_tensor = F.pad(local_tensor, [0, num_padding])
else:
local_tensor = torch.zeros(
chunk_size, dtype=sharded_tensor.dtype, device=cuda_device
)
move_to_cpu = torch.zeros(1, device=cuda_device)
tensor = torch.empty(
chunk_size * world_size,
dtype=local_tensor.dtype,
device=cuda_device,
)
dist._all_gather_base(tensor, local_tensor, group=pg)
tensor = tensor.narrow(0, 0, tensor_numel).reshape(sharded_tensor.size())
return tensor
def _gather_state_dict(
state_dict: Dict[str, Any],
pg: Optional[dist.ProcessGroup] = None,
) -> Dict[str, Any]:
"""
Given a state_dict, this API gathers all the ShardedTensors in the state_dict.
"""
new_state_dict = {}
for key, tensor in state_dict.items():
if isinstance(tensor, ShardedTensor):
output_tensor = _all_gather_sharded_tensor(tensor, pg)
if tensor.local_shards() and tensor.local_shards()[0].tensor.is_cuda:
tensor = output_tensor
else:
tensor = output_tensor.cpu()
new_state_dict[key] = tensor
return new_state_dict
def _create_chunk_sharded_tensor(
tensor: torch.Tensor,
rank: int,
world_size: int,
num_devices_per_node: int,
pg: dist.ProcessGroup,
) -> ShardedTensor:
"""
Shard a tensor to chunks along the first dimension. The local rank will gets its
corresponding chunk as the local shard to create a ShardedTensor.
"""
chunks = tensor.chunk(world_size, dim=0)
if len(chunks) > rank:
local_shard = chunks[rank].clone()
offsets = [0 for _ in tensor.size()]
offsets[0] = math.ceil(tensor.size()[0] / world_size) * rank
local_shards = [Shard.from_tensor_and_offsets(local_shard, offsets, rank)]
else:
local_shards = []
# Create a ShardedTensor without invoking communication.
chunk_sizes = [list(chunk.size()) for chunk in chunks]
dim0_offsets = [0] + list(
itertools.accumulate([chunk_size[0] for chunk_size in chunk_sizes])
)[:-1]
offsets = [0] * (len(chunk_sizes[0]) - 1)
chunk_offsets = [[d0] + offsets for d0 in dim0_offsets]
placements = [
f"rank:{r}/cuda:{r % num_devices_per_node}" for r in range(len(chunk_sizes))
]
assert len(chunk_sizes) == len(chunk_offsets) == len(placements)
shard_metadata = [
ShardMetadata(offset, size, placement)
for offset, size, placement in zip(chunk_offsets, chunk_sizes, placements)
]
sharded_tensor_metadata = ShardedTensorMetadata(
shards_metadata=shard_metadata,
size=tensor.size(),
tensor_properties=TensorProperties(
dtype=tensor.dtype,
layout=tensor.layout,
requires_grad=False,
memory_format=torch.contiguous_format,
pin_memory=tensor.is_pinned(),
)
)
return ShardedTensor._init_from_local_shards_and_global_metadata(
local_shards,
sharded_tensor_metadata=sharded_tensor_metadata,
process_group=pg
)
|