1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
from collections import abc, defaultdict
import logging
from typing import Dict, List, Optional, Union
import torch
from torch.cuda import FloatTensor # type: ignore[attr-defined]
from torch.cuda.amp.grad_scaler import GradScaler, OptState, _MultiDeviceReplicator
from torch.distributed.distributed_c10d import ProcessGroup
import torch.distributed as dist
from torch.optim.sgd import SGD
def _refresh_per_optimizer_state():
return {"stage": OptState.READY, "found_inf_per_device": {}}
def _is_supported_device(tensor: torch.Tensor):
return tensor.is_cuda or tensor.device.type in ("xla", "cpu")
class _GeneralMultiDeviceReplicator(_MultiDeviceReplicator):
"""
Lazily serves tensor to request device. This class extends
_MultiDeviceReplicator to allow support for "cpu" as a device.
"""
def __init__(self, master_tensor: torch.Tensor) -> None:
assert _is_supported_device(master_tensor)
self.master = master_tensor
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {}
class ShardedGradScaler(GradScaler):
"""
ShardedGradScaler helps perform gradient scaling in a shard aware manner. It extends
functionality from GradScaler:
* Suports Pytorch DDP and FSDP implementations
* Support CPU offloaded tensors (as used in fully sharded data parallel[FSDP])
* Supports the custom Mixed Precision loss dtype (fp16, bf16) that FSDP returns
* Sync inf/nan for scaled gradient tensors on any torch.device (where tensors are placed) across
nodes
Example::
# Creates a ShardedGradScaler once at the beginning of training.
scaler = ShardedGradScaler()
for epoch in epochs:
for input, target in data:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
# Scales loss. Calls backward() on scaled loss to create scaled gradients.
scaler.scale(loss).backward()
# scaler.step() first unscales gradients of the optimizer's params.
# If gradients don't contain infs/NaNs, optimizer.step() is then called,
# otherwise, optimizer.step() is skipped.
scaler.step(optimizer)
# Updates the scale for next iteration.
scaler.update()
See :class:`GradScaler` for explanation of scaling/unscaling and more use cases.
Args:
init_scale (float, optional, default=2.**16): Initial scale factor.
growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during
:meth:`update` if no inf/NaN gradients occur for ``growth_interval`` consecutive iterations.
backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during
:meth:`update` if inf/NaN gradients occur in an iteration.
growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients
that must occur for the scale to be multiplied by ``growth_factor``.
enabled (bool, optional): If ``False``, disables gradient scaling. :meth:`step` simply
invokes the underlying ``optimizer.step()``, and other methods become no-ops.
Default: ``True``
process_group (ProcessGroup, optional, default=torch.distributed.group.WORLD):
process group for sharding
"""
def __init__(
self,
init_scale: float = 2.0 ** 16,
backoff_factor: float = 0.5,
growth_factor: float = 2.0,
growth_interval: int = 2000,
enabled: bool = True,
process_group: Optional[ProcessGroup] = dist.group.WORLD,
):
super().__init__(
init_scale=init_scale,
backoff_factor=backoff_factor,
growth_factor=growth_factor,
growth_interval=growth_interval,
enabled=enabled,
)
if self._enabled:
self.process_group = process_group
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
def scale(self, outputs: Union[torch.Tensor, List[torch.Tensor]]) -> Union[torch.Tensor, List[torch.Tensor]]:
if not self._enabled:
return outputs
if isinstance(outputs, torch.Tensor):
assert _is_supported_device(outputs)
if self._scale is None:
self._lazy_init_scale_growth_tracker(outputs.device)
assert self._scale is not None
scaled_output = outputs * self._scale.to(device=outputs.device, non_blocking=True)
# Here we ensure the return dtype is the same as the outputs dtype.
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
return scaled_output.type(outputs.dtype)
stash: List[_GeneralMultiDeviceReplicator] = []
def apply_scale(val: Union[torch.Tensor, abc.Iterable]) -> Union[torch.Tensor, abc.Iterable]:
if isinstance(val, torch.Tensor):
assert _is_supported_device(val)
if len(stash) == 0:
if self._scale is None:
self._lazy_init_scale_growth_tracker(val.device)
assert self._scale is not None
stash.append(_GeneralMultiDeviceReplicator(self._scale))
scaled_val = val * stash[0].get(val.device)
# Here we ensure the return dtype is the same as the outputs dtype.
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
return scaled_val.type(val.dtype)
elif isinstance(val, abc.Iterable):
iterator = map(apply_scale, val)
if isinstance(val, (list, tuple)):
return type(val)(iterator)
else:
return iterator
else:
raise ValueError("outputs must be a Tensor or an iterable of Tensors")
return apply_scale(outputs) # type: ignore[return-value]
def _foreach_non_finite_check_and_unscale_cpu_(
self, grads: List, found_inf: torch.Tensor, inv_scale: torch.Tensor
) -> None:
if len(grads) == 0:
return
assert inv_scale.numel() == 1, "inv_scale must be a 1-element tensor."
assert found_inf.numel() == 1, "found_inf must be a 1-element tensor."
expected_device = grads[0].device
for grad in grads:
for tensor in grad:
if tensor.device != expected_device:
logging.error("tensor device is %s and expected device is %s" % (tensor.device, expected_device))
raise ValueError("Gradients must be on the same device.")
# check for non_overlapping_and_dense doesn't exist in the python world
# as remarked here https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/AmpKernels.cu#L108
# we assume tensor is not MTA(multi tensor apply) safe. iterate through each item regardless of dtype
if torch.isinf(tensor).any().item() is True or torch.isnan(tensor).any().item() is True:
found_inf.data = torch.tensor([1.0])
break
else:
tensor.data *= inv_scale.item()
def _unscale_grads_(
self, optimizer: SGD, inv_scale: torch.Tensor, found_inf: torch.Tensor, allow_fp16: bool = True
) -> Dict[torch.device, torch.Tensor]:
per_device_inv_scale = _GeneralMultiDeviceReplicator(inv_scale)
per_device_found_inf = _GeneralMultiDeviceReplicator(found_inf)
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
# There could be thousands of grads, so we'd like to iterate through them just once.
# However, we don't know their devices or dtypes in advance.
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
# Google says mypy struggles with defaultdicts type annotations.
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
with torch.no_grad():
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is None:
continue
if (not allow_fp16) and param.grad.dtype == torch.float16:
raise ValueError("Attempting to unscale FP16 gradients.")
if param.grad.is_sparse:
# is_coalesced() == False means the sparse grad has values with duplicate indices.
# coalesce() deduplicates indices and adds all values that have the same index.
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
# so we should check the coalesced _values().
if param.grad.dtype is torch.float16:
# coalesce is not suported in torch.float16
param_grad_fp32 = param.grad.type(torch.float32).coalesce()
param.grad = param_grad_fp32.type(torch.float16)
to_unscale = param.grad._values()
else:
to_unscale = param.grad
per_device_and_dtype_grads[to_unscale.device][to_unscale.dtype].append(to_unscale)
for device, per_dtype_grads in per_device_and_dtype_grads.items():
for grads in per_dtype_grads.values():
if grads[0].device.type == "cpu":
self._foreach_non_finite_check_and_unscale_cpu_(
grads,
per_device_found_inf.get(device),
per_device_inv_scale.get(device),
)
else:
torch._amp_foreach_non_finite_check_and_unscale_(
grads,
per_device_found_inf.get(device),
per_device_inv_scale.get(device),
)
return per_device_found_inf._per_device_tensors
def unscale_(self, optimizer: SGD) -> None:
if not self._enabled:
return
self._check_scale_growth_tracker("unscale_")
optimizer_state = self._per_optimizer_states[id(optimizer)]
if optimizer_state["stage"] is OptState.UNSCALED:
raise RuntimeError("unscale_() has already been called on this optimizer since the last update().")
elif optimizer_state["stage"] is OptState.STEPPED:
raise RuntimeError("unscale_() is being called after step().")
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
assert self._scale is not None
inv_scale = self._scale.double().reciprocal().float()
found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device)
optimizer_state["found_inf_per_device"] = self._unscale_grads_(optimizer, inv_scale, found_inf, True)
optimizer_state["stage"] = OptState.UNSCALED
# Synchronize the detected inf across the ranks
optimizer_state = self._per_optimizer_states[id(optimizer)]
future_handles = []
for v in optimizer_state["found_inf_per_device"].values():
if v.device.type == "cpu":
v_on_cuda = v.cuda()
future_handles.append(dist.all_reduce(v_on_cuda, async_op=True, group=self.process_group).get_future())
v.copy_(v_on_cuda.cpu())
else:
future_handles.append(dist.all_reduce(v, async_op=True, group=self.process_group).get_future())
# Make sure that the calls are done before moving out.
if future_handles:
torch.futures.wait_all(future_handles)
def step(self, optimizer: SGD, *args, **kwargs) -> Optional[float]:
return super().step(optimizer, *args, **kwargs)
def _amp_update_scale_cpu_(self, found_inf) -> None:
"""
If found_inf is 1.0 (True), then scale is multiplied by backoff_factor and growth_tracker is set to zero.
Otherwise, scale is multiplied by the growth factor when the growth interval is reached.
"""
if found_inf.item() >= 1.0:
self._scale *= self._backoff_factor # type: ignore[arg-type]
self._growth_tracker = 0
else:
successful = self._growth_tracker + 1 # type: ignore[operator]
if successful == self._growth_interval: # type: ignore[arg-type]
self._scale *= self._growth_factor # type: ignore[arg-type]
self._growth_tracker = 0
else:
self._growth_tracker = successful
def update(self, new_scale: Optional[Union[float, FloatTensor]] = None) -> None:
"""
Updates the scale factor.
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
the scale is multiplied by ``growth_factor`` to increase it.
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
used directly, it's used to fill GradScaler's internal scale tensor. So if
``new_scale`` was a tensor, later in-place changes to that tensor will not further
affect the scale GradScaler uses internally.)
Args:
new_scale (float or :class:`torch.cuda.FloatTensor`, optional, default=None): New scale factor.
.. warning::
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
been invoked for all optimizers used this iteration.
"""
if not self._enabled:
return
_scale, _growth_tracker = self._check_scale_growth_tracker("update") # type: ignore[var-annotated]
if new_scale is not None:
# Accept a new user-defined scale.
if isinstance(new_scale, float):
self._scale.fill_(new_scale) # type: ignore[union-attr]
else:
reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor with requires_grad=False."
assert isinstance(new_scale, torch.cuda.FloatTensor), reason # type: ignore[attr-defined]
assert new_scale.numel() == 1, reason
assert new_scale.requires_grad is False, reason
self._scale.copy_(new_scale) # type: ignore[union-attr]
else:
# Consume shared inf/nan data collected from optimizers to update the scale.
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
found_infs = [
found_inf.to(device=_scale.device, non_blocking=True)
for state in self._per_optimizer_states.values()
for found_inf in state["found_inf_per_device"].values()
]
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
found_inf_combined = found_infs[0]
if len(found_infs) > 1:
for i in range(1, len(found_infs)):
found_inf_combined += found_infs[i]
if _scale.device.type == "cpu":
self._amp_update_scale_cpu_(found_inf_combined)
else:
torch._amp_update_scale_(
self._scale, # type: ignore[arg-type]
self._growth_tracker, # type: ignore[arg-type]
found_inf_combined,
self._growth_factor, # type: ignore[arg-type]
self._backoff_factor, # type: ignore[arg-type]
self._growth_interval, # type: ignore[arg-type]
)
# To prepare for next iteration, clear the data collected from optimizers this iteration.
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|