1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
from dataclasses import dataclass
from typing import (
Any,
Callable,
Dict,
Generator,
Optional,
Set,
Tuple,
Type,
cast,
)
import torch.nn as nn
from torch.nn.modules.batchnorm import _BatchNorm
__all__ = [
"always_wrap_policy",
"lambda_auto_wrap_policy",
"transformer_auto_wrap_policy",
"size_based_auto_wrap_policy",
"enable_wrap",
"wrap",
"ParamExecOrderWrapPolicy",
]
def always_wrap_policy(*args, **kwargs) -> bool:
"""
A simple wrapper policy that always returns ``True``,
i.e. when passed as the `auto_wrap_policy` into FSDP,
this will result in all submodules being wrapped as
distinct FSDP instances.
"""
return True
def lambda_auto_wrap_policy(
module: nn.Module,
recurse: bool,
unwrapped_params: int,
lambda_fn: Callable
) -> bool:
"""
A convenient auto wrap policy to wrap submodules based on an arbitrary user
function. If `lambda_fn(submodule) == True``, the submodule will be wrapped as
a `wrapper_cls` unit.
Return if a module should be wrapped during auto wrapping.
The first three parameters are required by :func:`_recursive_wrap`.
Args:
module (nn.Module):
The module to be considered in this decision.
recurse (bool):
Indicate if this is called to make a decision on whether we
should recurse down a subgraph of the module structure.
If False, it means this function is called to make a decision
on whether we should wrap the said module.
unwrapped_params (int):
The number of parameters yet to be wrapped in this module.
lambda_fn (Callable[nn.Module] -> bool):
If this returns ``True``, this module will be wrapped by
wrapper_cls individually.
"""
if recurse:
# always recurse
return True
else:
# if not recursing, decide whether we should wrap for the leaf node or reminder
return lambda_fn(module)
def transformer_auto_wrap_policy(
module: nn.Module,
recurse: bool,
unwrapped_params: int,
transformer_layer_cls: Set[Type[nn.Module]],
) -> bool:
"""
A convenient auto wrap policy for transformer models. If the submodule
is an instance of transformer_layer_cls, the submodule will be wrapped
as a FSDP unit. Otherwise, all the other remainder submodules are wrapped
by the outermost FSDP unit. Right now, FSDP requires submodules that share
weights to be wrapped in the same FSDP unit, this auto wrap policy can
conviniently wrap the shared embeddings into the same FSDP unit for transformer
models. In the near future, FSDP will support submodules that share weights
to be wrapped in the separated FSDP units.
Return if a module should be wrapped during FSDP auto wrapping.
The first three parameters are required by :func:`_recursive_wrap`.
Args:
module (nn.Module):
The module to be considered in this decision.
recurse (bool):
Indicate if this is called to make a decision on whether we
should recurse down a subgraph of the module structure.
If False, it means this function is called to make a decision
on whether we should wrap the said module.
unwrapped_params (int):
The number of parameters yet to be wrapped in this module.
transformer_layer_cls (int):
Submodules with one of the `transformer_layer_cls` names
will be wrapped as separated FSDP units
"""
if recurse:
# always recurse
return True
else:
# if not recursing, decide whether we should wrap for the leaf node or reminder
return isinstance(module, tuple(transformer_layer_cls))
def _wrap_batchnorm_individually(
module: nn.Module,
recurse: bool,
*args,
**kwargs,
) -> bool:
"""
A policy that wraps ``BatchNorm`` instances in their own FSDP unit.
"""
if recurse:
# always recurse
return True
else:
# if not recursing, decide whether we should wrap based on whether it is a
# BN layer or not.
return isinstance(module, _BatchNorm)
def _or_policy(
module: nn.Module,
recurse: bool,
unwrapped_params: int,
policies,
) -> bool:
"""
A policy that wraps ``module`` if any policy in the passed in iterable of
``policies`` returns ``True``.
"""
return any(
policy(module, recurse, unwrapped_params) for policy in policies
)
def size_based_auto_wrap_policy(
module: nn.Module,
recurse: bool,
unwrapped_params: int,
# These are customizable for this policy function.
min_num_params: int = int(1e8),
force_leaf_modules: Optional[Set[Type[nn.Module]]] = None,
exclude_wrap_modules: Optional[Set[Type[nn.Module]]] = None,
) -> bool:
"""A size based auto_wrap_policy function for FSDP API.
Return if a module should be wrapped during FSDP auto wrapping.
The first three parameters are used by :func:`_recursive_wrap`. If
you write a custom version of this policy function, your version
needs to at least accept the first three parameters and free
to do whatever you want in the function.
Args:
module (nn.Module):
The module to be considered in this decision.
recurse (bool):
Indicate if this is called to make a decision on whether we
should recurse down a subgraph of the module structure.
If False, it means this function is called to make a decision
on whether we should wrap the said module.
unwrapped_params (int):
The number of parameters yet to be wrapped in this module.
min_num_params (int):
Customizable policy input. It controls the size threshold
on how big should a module be to be considered wrapped.
force_leaf_modules (Set[Type[nn.Module]]): set of module types to
keep as leaves, i.e., their children will never be wrapped.
exclude_wrap_modules (Set[Type[nn.Module]]):
Customizable set of module types to be excluded in wrapping.
"""
force_leaf_modules = (
size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
if force_leaf_modules is None
else force_leaf_modules
)
exclude_wrap_modules = (
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
if exclude_wrap_modules is None
else exclude_wrap_modules
)
is_large = unwrapped_params >= min_num_params
if recurse:
# We should recurse if the module is big enough but not in force_leaf_modules list.
return is_large and not isinstance(module, tuple(force_leaf_modules))
else:
# If we are not recursing, determine if we should wrap.
return is_large and not isinstance(module, tuple(exclude_wrap_modules))
# Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {nn.ModuleList, nn.ModuleDict} # type: ignore[attr-defined]
size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {nn.MultiheadAttention} # type: ignore[attr-defined]
@contextlib.contextmanager
def enable_wrap(
*, wrapper_cls: Any, **wrapper_kwargs: Any
) -> Generator[None, None, None]:
"""
Context manager to wrap modules using a wrapper.
Useful for when you'd like to apply the same configuration arguments to all
child modules that you wrap. A particularly important use case is wrapping
large layers so that they get sharded (in-place) during initialization, to
avoid running out of system memory. Large layers can indicate that they
should be sharded via the ``wrap`` annotation and this context manager can
provide the exact configuration for these nested instances.
Usage::
with enable_wrap(wrapper_cls, **params):
# Wraps layer in FSDP by default if within context
self.l1 = wrap(torch.nn.Linear(5, 5))
Args:
wrapper_cls:
Class that `wrap` annotation will `wrap` modules with, such as
`FullyShardedDataParallel`.
**wrapper_kwargs:
Configuration settings that will be passed to all ``wrap``
instances inside the context
"""
kwargs = {
**{"wrapper_cls": wrapper_cls},
**wrapper_kwargs,
}
with _ConfigAutoWrap(**kwargs):
yield
def wrap(module: nn.Module, **wrap_overrides: Any) -> nn.Module:
"""
Annotate that a module should be wrapped. Annotated modules will only be
wrapped if inside of an :func:`enable_wrap` context manager. This allows
a module to be initialized both with and without a wrapper without code
change.
The class that this function wraps the passed in ``nn.Module`` with is the
passed in ``wrapper_cls`` argument into ``enable_wrap``. Both
``enable_wrap`` and ``wrap`` can take in kwargs specifying how to construct
the ``wrapper_cls`` instance. In the case of duplicate kwargs in
``enable_wrap`` and ``wrap``, the argument passed into ``wrap`` will be
respected.
Usage::
with enable_wrap(wrapper_cls=FSDP, **fsdp_config):
# Wraps layer in FSDP by default if within context
self.l1 = wrap(torch.nn.Linear(5, 5))
Args:
module (nn.Module): module to wrap (if in :func:`enable_wrap` context)
**wrap_overrides: configuration overrides that will take priority over
the values provided by the :func:`enable_wrap` context
"""
if _ConfigAutoWrap.in_autowrap_context:
assert _ConfigAutoWrap.wrapper_cls is not None
wrap_overrides = {**_ConfigAutoWrap.kwargs, **wrap_overrides}
return _wrap(
module,
_ConfigAutoWrap.wrapper_cls,
**wrap_overrides,
)
return module
@dataclass
class ParamExecOrderWrapPolicy:
"""
This is the class used for the wrapping policy that wraps parameters and performs
the communication scheduling based on the parameter execution order in the forward pass
(also called non-recursive wrapping policy).
The policy contains multiple wraps. Each wrap contains original parameters that will be executed together,
and the wrap transfers these parameters into one ``FlattenParameter``. In both forward and the backward passes,
the sharded parameters in each wrap will be gathered just before these parameters are used in the passes.
These parameters will then be reshaded once they have been used.
TODO (linjianma): For now, the parameters contained in each wrap of ``ParamExecOrderWrapPolicy``
are the parameters in each wrap of the ``init_policy`` (a recursive wrapping policy).
Later we will wrap parameters based on bucket size.
Args:
init_policy (Callable):
The initial recursive wrapping policy used to guide the wrapping of
this policy. If tracing_config is none, in the first forward and
backward iteration, ``init_policy`` is used to record parameter
execution order. Otherwise, init_policy is only used in FSDP
constructor for module level wrapping.
The default ``always_wrap_policy`` might not be the best choice for every model. For example, for
transformer based models, setting ``transformer_auto_wrap_policy`` as the ``init_policy`` will guarantee
wrapping each transformer layer into one FSDP unit, and can be easily combined with checkpointing
within each transformer layer.
tracing_config (Optional[TracingConfig]):
The configuration used to perform symbolic tracing at FSDP
constructor to get the module and parameter execution order. The
type of ``tracing_config`` needs to be either ``None`` or
``TracingConfig``. If set as ``None``, then symbolic tracing is not
enabled, and one forward as well as backward iteration are needed to
get the parameter execution order.
..warning :: Note that not all modules can be successfully traced when
``tracing_config`` is not None and symbolic tracing is enabled. The two
cases below may be unable to trace: 1. when there is a data-dependent
branch, 2. when the forward pass contains operators that don't support
``torch.fx.Proxy`` as the input type (e.g. ``arange``, ``zeros``, ``ones``,
``full``, ``full_like``, ``eye``, ``empty``, ``tensor``). For those cases,
users can set ``tracing_config = None`` to disable symbolic tracing.
"""
init_policy: Callable = always_wrap_policy
tracing_config: Any = None
def _wrap(module: nn.Module, wrapper_cls: Callable, **kwargs) -> nn.Module:
assert wrapper_cls is not None
if hasattr(module, '_wrap_overrides'):
# If module has a _wrap_overrides attribute, we force overriding the
# FSDP config with these attributes for this module. Currently this
# is only used to disable mixed precision for BatchNorm when
# auto_wrapping.
overrides = {**kwargs, **module._wrap_overrides} # type: ignore[arg-type]
return wrapper_cls(module, **overrides)
return wrapper_cls(module, **kwargs)
def _recursive_wrap(
module: nn.Module,
auto_wrap_policy: Callable,
wrapper_cls: Callable,
ignored_modules: Set[nn.Module],
ignored_params: Set[nn.Parameter],
only_wrap_children: bool = False,
**kwargs: Any
) -> Tuple[nn.Module, int]:
"""
Automatically wrap child modules of *module* that meet the given
criteria with :func:`auto_wrap`. Does not rely on _ConfigAutoWrap.
Args:
module (nn.Module):
module to recursively wrap
auto_wrap_policy (Callable):
A callable specifying a policy to recursively wrap layers with FSDP.
ignored_modules (Set[torch.nn.Module]): Modules to ignore when
wrapping.
ignored_params (Set[torch.nn.Parameter]): Parameters to ignore when
wrapping; these should be the parameters contained in the modules
in ``ignored_modules``.
Returns:
(nn.Module, int):
Wrapped module and the number parameters wrapped recursively.
"""
assert auto_wrap_policy is not None, "Must specify auto_wrap_policy."
assert wrapper_cls is not None, "Must specify wrapper_cls"
# Make sure no child is already wrapped.
for _, child in module.named_modules():
if child in ignored_modules:
continue
try:
assert not isinstance(child, cast(type, wrapper_cls))
except TypeError:
# wrapper_cls is a function as opposed to a class type, just bypass above check.
pass
# We count all params, assuming none of them are already wrapped.
num_params = sum(
p.numel() for p in module.parameters() if p not in ignored_params
)
assert auto_wrap_policy is not None
if auto_wrap_policy(module=module, recurse=True, unwrapped_params=num_params):
total_wrapped_params = 0
# Iterate through the children, recursively wrap if necessary
for name, child in module.named_children():
if child in ignored_modules:
continue
wrapped_child, num_wrapped_params = _recursive_wrap(
module=child,
auto_wrap_policy=auto_wrap_policy,
wrapper_cls=wrapper_cls,
ignored_modules=ignored_modules,
ignored_params=ignored_params,
**kwargs,
)
setattr(module, name, wrapped_child)
# Keep track of how many parameters have been wrapped
total_wrapped_params += num_wrapped_params
# decide if we need to wrap the current module,
# since the left over parameters exceed the number of params to wrap
remainder = num_params - total_wrapped_params
if not only_wrap_children and auto_wrap_policy(
module=module, recurse=False, unwrapped_params=remainder
):
# Leaf node or final wrapping of the remainder both happen here.
return _wrap(module, wrapper_cls, **kwargs), num_params
else:
return module, total_wrapped_params
return module, 0
class _ConfigAutoWrap:
"""
Helper class to wrap modules based on default config args via a context manager.
See :func:`enable_wrap` for more information.
"""
in_autowrap_context: bool = False # Context flag
wrapper_cls: Optional[Callable] = None # The wrapper class
kwargs: Dict[str, Any] = {} # Wrapper's args
def __init__(self, **kwargs: Dict[str, Any]):
self.kwargs = kwargs
@staticmethod
def enable_autowrap_context(kwargs: Any) -> None:
if _ConfigAutoWrap.in_autowrap_context:
raise NotImplementedError(
"You are already within an autowrap context and we currently do not supported nested autowrap."
)
_ConfigAutoWrap.in_autowrap_context = True
# Get and save the wrapper cls for the context.
assert (
"wrapper_cls" in kwargs.keys()
), "Expected to pass in wrapper_cls arg into _ConfigAutoWrap."
_ConfigAutoWrap.wrapper_cls = cast(Callable, kwargs["wrapper_cls"])
del kwargs["wrapper_cls"]
# Save the rest.
_ConfigAutoWrap.kwargs = kwargs
@staticmethod
def disable_autowrap_context() -> None:
_ConfigAutoWrap.in_autowrap_context = False
_ConfigAutoWrap.wrapper_cls = None
_ConfigAutoWrap.kwargs = {}
def __enter__(self) -> None:
self.enable_autowrap_context(self.kwargs)
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
self.disable_autowrap_context()
|