1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
|
#!/usr/bin/python3
import collections
import io
import sys
import types
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Set,
Tuple,
Type,
TypeVar,
Union,
)
import torch
import torch.distributed.rpc as rpc
from torch import Tensor, device, dtype, nn
from torch.distributed.nn.jit import instantiator
from torch.distributed import _remote_device
from torch.distributed.rpc.internal import _internal_rpc_pickler
from torch.nn import Module
from torch.nn.parameter import Parameter
from torch.utils.hooks import RemovableHandle
__all__ = ["RemoteModule"]
_grad_t = Union[Tuple[Tensor, ...], Tensor]
# See https://mypy.readthedocs.io/en/latest/generics.html#generic-methods-and-generic-self for the use
# of `T` to annotate `self`. Many methods of `Module` return `self` and we want those return values to be
# the type of the subclass, not the looser type of `Module`.
T = TypeVar("T", bound="Module")
_NON_SCRIPTABLE_REMOTE_MODULE_MODULE = (
instantiator.instantiate_non_scriptable_remote_module_template()
)
_REMOTE_MODULE_PICKLED_ATTRIBUTES = (
"on",
"device",
"is_device_map_set",
"is_scriptable",
"generated_methods",
"module_rref",
)
_SerializedRemoteModule = collections.namedtuple("_SerializedRemoteModule", _REMOTE_MODULE_PICKLED_ATTRIBUTES) # type: ignore[misc]
# These attributes are mostly from RemoteModule's parent class and are intentionally not pickled.
# A new attribute of RemoteModule should be either in _REMOTE_MODULE_PICKLED_ATTRIBUTES
# or _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING.
# Otherwise, it will not be pickled.
_REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING = (
"training",
"_parameters",
"_buffers",
"_non_persistent_buffers_set",
"_backward_hooks",
"_is_full_backward_hook",
"_forward_hooks",
"_forward_pre_hooks",
"_state_dict_hooks",
"_load_state_dict_pre_hooks",
"_load_state_dict_post_hooks",
"_modules",
# The two attributes below are generated methods, not available at pickling time.
"forward_async",
"forward",
)
# RPC handler.
def _instantiate_template(module_interface_cls, enable_moving_cpu_tensors_to_cuda):
instantiator.instantiate_scriptable_remote_module_template(
module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
def _create_module(module_cls, args, kwargs, device):
module = module_cls(*args, **kwargs)
if not isinstance(module, nn.Module):
raise ValueError(
"Expect `module_cls(*args, **kwargs)` returns an instance of <class nn.Module>, "
f"but it returns an instance of {type(module)}."
)
module.to(device)
return module
def _create_module_with_interface(
module_cls, args, kwargs, device, module_interface_cls
):
module = _create_module(module_cls, args, kwargs, device)
if module_interface_cls is not None:
module = torch.jit.script(module)
return rpc.RRef(module, module_interface_cls)
def _param_rrefs(module_rref, recurse) -> List[rpc.RRef[Parameter]]:
ret: List[rpc.RRef[Parameter]] = []
for param in module_rref.local_value().parameters(recurse):
ret.append(rpc.RRef(param))
return ret
def _raise_not_supported(name: str) -> None:
raise ValueError("Method ``{}`` not supported for RemoteModule".format(name))
class _RemoteModule(nn.Module):
def __new__(cls, *args, **kwargs):
# Use __new__ for logging purposes.
torch._C._log_api_usage_once("torch.distributed.nn.api.remote_module")
return super(_RemoteModule, cls).__new__(cls)
def __init__(
self,
remote_device: str,
module_cls: Type[nn.Module],
args: Tuple = None,
kwargs: Dict[str, Any] = None,
_module_interface_cls: Any = None,
):
"""
A RemoteModule instance can only be created after RPC initialization.
It creates a user-specified module on a specified remote node.
It behaves like a regular ``nn.Module`` except that the ``forward`` method is
executed on the remote node.
It takes care of autograd recording to ensure the backward pass propogates
gradients back to the corresponding remote module.
It can be shared across processors using `RPC framework <https://pytorch.org/docs/stable/rpc.html>`__,
without incurring any overheads of copying the actual module,
which is equivalent to an :class:`~torch.distributed.rpc.RRef`
pointing to the remote module.
The arguments of ``forward_async`` and ``forward`` are the same as
the ``forward`` method of the module returned by the ``module_cls``.
Apart from ``forward_async`` and ``forward``, no other methods are supported from nn.Module for now.
Particularly, to create a hybrid model, typically the local modules should be
created outside of remote modules, rather than as submodules of any remote module (by calling ``add_module``).
Hybrid Example:
>>> class HybridModel(nn.Module):
>>> def __init__(self):
>>> nn.Module.__init__(self)
>>> self.remote_embedding = RemoteModule(...)
>>> self.local_linear = nn.Linear(...)
For example, if ``module_cls`` returns an instance of ``nn.Linear``,
that has ``forward`` method signature, ``def forward(input: Tensor) -> Tensor:``,
the generated ``RemoteModule`` will have 2 methods in signature of
``def forward(input: Tensor) -> Tensor:`` and
``def forward_async(input: Tensor) -> Future[Tensor]:``.
.. note::
If the remote module is placed on a cuda device,
any input CPU tensors will be automatically moved to the same cuda device,
and GPU tensors are returned over the wire according to the device map of the remote worker on TensorPipe RPC backend.
Args:
remote_device (str): Device on the destination worker where we'd like to place this module.
The device can be a local device or a remote device specified by one of the following remote
formats:
1. "rank:<rank>/<device>" (ex: "rank:0/cuda:0").
2. "<worker_name>/<device>" (ex: "trainer0/cuda:0").
In addition, the device field can be optional and the default value is "cpu".
module_cls (nn.Module): For example,
>>> class MyModule(nn.Module):
>>> def forward(input):
>>> return input + 1
>>>
>>> module_cls = MyModule
args (Sequence, optional): args to be passed to ``module_cls``.
kwargs (Dict, optional): kwargs to be passed to ``module_cls``.
_module_interface_cls (type, optional): The TorchScript interface type for the module
to be created. The type object should be decorated by @torch.jit.interface.
If not provided, the generated RemoteModule is not torchscript-able.
Warning, this is an experimental API and susceptible to frequent changes.
Returns:
A remote module instance which wraps the :class:`~nn.Module` created by the
user-provided ``module_cls``, it has a blocking ``forward`` method and an
asynchronous ``forward_async`` method that returns a future of the ``forward`` call
on the user-provided module on the remote side.
Example::
Run the following code in two different processes:
>>> # xdoctest: +SKIP("distributed")
>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> from torch import nn, Tensor
>>> from torch.distributed.nn.api.remote_module import RemoteModule
>>>
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> remote_linear_module = RemoteModule(
>>> "worker1/cpu", nn.Linear, args=(20, 30),
>>> )
>>> input = torch.randn(128, 20)
>>> ret_fut = remote_linear_module.forward_async(input)
>>> ret = ret_fut.wait()
>>> rpc.shutdown()
>>> # On worker 1:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>>
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()
"""
super().__init__()
enable_moving_cpu_tensors_to_cuda = self._prepare_init(remote_device)
# Default arguments preperation.
args = args if args is not None else ()
kwargs = kwargs if kwargs is not None else {}
if _module_interface_cls is not None:
# Users reply on this field to know if this generated RemoteModule is TorchScript-able.
self.is_scriptable = True
# Instantiate template on remote side.
fut = rpc.rpc_async(
self.on,
_instantiate_template,
(_module_interface_cls, enable_moving_cpu_tensors_to_cuda),
)
self._init_template(
_module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
# Instantiate template on remote side.
fut = rpc.rpc_async(
self.on,
_instantiate_template,
(_module_interface_cls, enable_moving_cpu_tensors_to_cuda),
)
# Create the module on the remote side.
fut.wait() # Ensure remote_module_cls is available on remote side.
# TODO: We need to change this to rpc.remote, and make it async (see the else branch below).
# For that we need to be able to apply _module_interface_cls to the RRef returned by rpc.remote
# See https://github.com/pytorch/pytorch/issues/58098 for more context.
self.module_rref = rpc.rpc_sync(
self.on,
_create_module_with_interface,
(module_cls, args, kwargs, self.device, _module_interface_cls),
)
else:
self.is_scriptable = False
self.generated_methods = (
_NON_SCRIPTABLE_REMOTE_MODULE_MODULE._generated_methods
)
# Create the module on the remote side.
self.module_rref = rpc.remote(
self.on,
_create_module,
(module_cls, args, kwargs, self.device),
)
self._install_generated_methods()
self._check_attribute_picklability()
def remote_parameters(self, recurse: bool = True) -> List[rpc.RRef[Parameter]]:
"""
Returns a list of :class:`~torch.distributed.rpc.RRef` pointing to the
remote module's parameters. This can typically be used in conjuction
with :class:`~torch.distributed.optim.DistributedOptimizer`.
Args:
recurse (bool): if True, then returns parameters of the remote
module and all submodules of the remote module. Otherwise,
returns only parameters that are direct members of the
remote module.
Returns:
A list of :class:`~torch.distributed.rpc.RRef` (``List[RRef[nn.Parameter]]``)
to remote module's parameters.
"""
return rpc.rpc_sync(self.on, _param_rrefs, args=(self.module_rref, recurse))
def get_module_rref(self) -> rpc.RRef[nn.Module]:
"""
Returns an :class:`~torch.distributed.rpc.RRef` (``RRef[nn.Module]``)
pointing to the remote module.
"""
return self.module_rref
@torch.jit.export
def __getstate__(self):
raise RuntimeError(
"Cannot pickle RemoteModule in python pickler. RemoteModule can only be pickled when using RPC"
)
@torch.jit.export
def __setstate__(self, state):
raise RuntimeError(
"Cannot unpickle RemoteModule in python pickler. RemoteModule can only be unpickled when using RPC"
)
def register_buffer(
self, name: str, tensor: Optional[Tensor], persistent: bool = True
) -> None:
_raise_not_supported(self.register_buffer.__name__)
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
_raise_not_supported(self.register_parameter.__name__)
def add_module(self, name: str, module: Optional[Module]) -> None:
_raise_not_supported(self.add_module.__name__)
def apply(self: T, fn: Callable[[Module], None]) -> T: # type: ignore[return]
_raise_not_supported(self.apply.__name__)
def cuda(self: T, device: Optional[Union[int, device]] = None) -> T: # type: ignore[return]
_raise_not_supported(self.cuda.__name__)
def ipu(self: T, device: Optional[Union[int, device]] = None) -> T: # type: ignore[return]
_raise_not_supported(self.ipu.__name__)
def xpu(self: T, device: Optional[Union[int, device]] = None) -> T: # type: ignore[return]
_raise_not_supported(self.xpu.__name__)
def cpu(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.cpu.__name__)
def type(self: T, dst_type: Union[dtype, str]) -> T: # type: ignore[return]
_raise_not_supported(self.type.__name__)
def float(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.float.__name__)
def double(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.double.__name__)
def half(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.half.__name__)
def bfloat16(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.bfloat16.__name__)
def to(self, *args, **kwargs) -> T: # type: ignore[return]
_raise_not_supported(self.to.__name__)
def register_backward_hook( # type: ignore[return]
self, hook: Callable[[Module, _grad_t, _grad_t], Union[None, Tensor]]
) -> RemovableHandle:
_raise_not_supported(self.register_backward_hook.__name__)
def register_forward_pre_hook(self, hook: Callable[..., None]) -> RemovableHandle: # type: ignore[return]
_raise_not_supported(self.register_forward_pre_hook.__name__)
def register_forward_hook(self, hook: Callable[..., None]) -> RemovableHandle: # type: ignore[return]
_raise_not_supported(self.register_forward_hook.__name__)
def state_dict(self, *args, **kwargs):
_raise_not_supported(self.state_dict.__name__)
def load_state_dict(
self,
state_dict: Mapping[str, Any],
strict: bool = True,
):
_raise_not_supported(self.load_state_dict.__name__)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
raise ValueError(
"Method ``parameters`` not supported for RemoteModule. Please use ``remote_parameters`` instead."
)
def named_parameters( # type: ignore[return]
self, prefix: str = "", recurse: bool = True
) -> Iterator[Tuple[str, Parameter]]:
_raise_not_supported(self.named_parameters.__name__)
def buffers(self, recurse: bool = True) -> Iterator[Tensor]: # type: ignore[return]
_raise_not_supported(self.buffers.__name__)
def named_buffers( # type: ignore[return]
self, prefix: str = "", recurse: bool = True
) -> Iterator[Tuple[str, Tensor]]:
_raise_not_supported(self.named_buffers.__name__)
def children(self) -> Iterator[Module]: # type: ignore[return]
_raise_not_supported(self.children.__name__)
def named_children(self) -> Iterator[Tuple[str, Module]]: # type: ignore[return]
_raise_not_supported(self.named_children.__name__)
def modules(self) -> Iterator[Module]: # type: ignore[return]
_raise_not_supported(self.modules.__name__)
def named_modules(
self,
memo: Optional[Set[Module]] = None,
prefix: str = "",
remove_duplicate: bool = True,
):
_raise_not_supported(self.named_modules.__name__)
def train(self: T, mode: bool = True) -> T:
return self.module_rref.rpc_sync().train() # type: ignore[operator, union-attr]
def eval(self: T) -> T:
return self.module_rref.rpc_sync().eval() # type: ignore[operator, union-attr]
def requires_grad_(self: T, requires_grad: bool = True) -> T: # type: ignore[return]
_raise_not_supported(self.requires_grad_.__name__)
def zero_grad(self, set_to_none: bool = False) -> None:
_raise_not_supported(self.zero_grad.__name__)
def share_memory(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.share_memory.__name__)
def extra_repr(self) -> str: # type: ignore[return]
_raise_not_supported(self.extra_repr.__name__)
def _prepare_init(self, remote_device_str: str) -> bool:
"""
Prepares the initializaiton and returns whether to enable automatically moving CPU tensors to CUDA devices.
"""
# Sanity check.
assert rpc._is_current_rpc_agent_set(), "RemoteModule only works in RPC."
remote_device = _remote_device(remote_device_str)
self.on = remote_device.worker_name() if remote_device.worker_name() is not None else remote_device.rank()
self.device = str(remote_device.device())
agent = rpc._get_current_rpc_agent()
# If the device map of the remote worker is set,
# then enable moving any input CPU tensors to the same cuda device.
self.is_device_map_set = bool(
agent._get_device_map(agent.get_worker_info(self.on)) # type: ignore[arg-type]
)
# ``enable_moving_cpu_tensors_to_cuda`` is less strict than ``is_device_map_set``:
# If ``enable_moving_cpu_tensors_to_cuda`` is true, but the device map is not set,
# then any CPU tensors can still be moved to a cuda device to run forward,
# but the output must be moved back to CPU before being sent over the wire.
enable_moving_cpu_tensors_to_cuda = torch.device(self.device).type == "cuda"
return enable_moving_cpu_tensors_to_cuda
def _init_template(self, module_interface_cls, enable_moving_cpu_tensors_to_cuda):
"""
Instantiates template on local side.
"""
generated_module = instantiator.instantiate_scriptable_remote_module_template(
module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
self.generated_methods = generated_module._generated_methods
def _check_attribute_picklability(self):
"""
Checks if all the attribute has explicitly defined whether to be pickled (i.e., picklability).
"""
for k in self.__dict__.keys():
if (
k not in _REMOTE_MODULE_PICKLED_ATTRIBUTES
and k not in _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING
):
raise AttributeError(
"Attribute {} must be either in ``_REMOTE_MODULE_PICKLED_ATTRIBUTES`` or "
"``_REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING``.".format(k)
)
def _install_generated_methods(self):
for method in self.generated_methods:
method_name = method.__name__
method = torch.jit.export(method)
setattr(self, method_name, types.MethodType(method, self))
@staticmethod
def init_from_module_rref(
remote_device: str,
module_rref: rpc.RRef[nn.Module],
_module_interface_cls: Any = None,
):
"""
Besides the constructor, a RemoteModule instance can also be initialized given a module RRef.
This alternate initiailization method can be particularly useful if we want to create multiple
RemoteModule instances that share the same underlying module and reduce memory consumption.
Moreover, this also provides a workaround for passing script RemoteModule over RPC,
which is not supported. The recommended way is as follows:
1. the sender creates a RemoteModule;
2. the sender sends its ``module_rref`` over RPC;
3. the receiver calls this method to initialize another RemoteModule using the same ``module_rref``.
Example::
Run the following code in two different processes:
>>> # xdoctest: +SKIP("distributed")
>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> from torch import nn, Tensor
>>> from torch.distributed.nn.api.remote_module import RemoteModule
>>>
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> remote_module = RemoteModule(
>>> "worker1/cpu", nn.Linear, args=(20, 30),
>>> )
>>>
>>> remote_module1 = rpc.rpc_sync(
>>> "worker1/cpu",
>>> RemoteModule.init_from_module_rref,
>>> ("worker1/cpu", remote_module1.get_module_rref()),
>>> )
>>> rpc.shutdown()
>>> # On worker 1:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>>
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()
Args:
remote_device (str): Device on the destination worker where we'd like to place this module.
The device can be a local device or a remote device specified by one of the following remote
formats:
1. "rank:<rank>/<device>" (ex: "rank:0/cuda:0").
2. "<worker_name>/<device>" (ex: "trainer0/cuda:0").
In addition, the device field can be optional and the default value is "cpu".
module_rref (RRef[nn.Module]): The module reference shared by both the caller and
the created remote module.
_module_interface_cls (type, optional): The TorchScript interface type for the module
to be created. The type object should be decorated by @torch.jit.interface.
If not provided, the generated RemoteModule is not torchscript-able.
Warning, this is an experimental API and susceptible to frequent changes.
Returns:
A remote module instance which wraps the :class:`~nn.Module` created by the
user-provided ``module_rref``, it has a blocking ``forward`` method and an
asynchronous ``forward_async`` method that returns a future of the ``forward`` call
on the user-provided module on the remote side.
"""
# NOTE: if a new attribute is added to this class, also need to add it
# to ``_REMOTE_MODULE_PICKLED_ATTRIBUTES`` for pickling/unpickling.
remote_module = object.__new__(RemoteModule)
enable_moving_cpu_tensors_to_cuda = remote_module._prepare_init(remote_device)
if _module_interface_cls is not None:
# Users reply on this field to know if this generated RemoteModule is TorchScript-able.
remote_module.is_scriptable = True
remote_module._init_template(
_module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
else:
remote_module.is_scriptable = False
remote_module.generated_methods = (
_NON_SCRIPTABLE_REMOTE_MODULE_MODULE._generated_methods
)
remote_module.module_rref = module_rref
remote_module._install_generated_methods()
remote_module._check_attribute_picklability()
return remote_module
class RemoteModule(_RemoteModule):
"""
A RemoteModule instance can only be created after RPC initialization.
It creates a user-specified module on a specified remote node.
It behaves like a regular ``nn.Module`` except that the ``forward`` method is
executed on the remote node.
It takes care of autograd recording to ensure the backward pass propogates
gradients back to the corresponding remote module.
It generates two methods ``forward_async`` and ``forward`` based on the
signature of the ``forward`` method of ``module_cls``. ``forward_async``
runs asynchronously and returns a Future. The arguments of ``forward_async``
and ``forward`` are the same as the ``forward`` method of the module
returned by the ``module_cls``.
For example, if ``module_cls`` returns an instance of ``nn.Linear``,
that has ``forward`` method signature: ``def forward(input: Tensor) -> Tensor:``,
the generated ``RemoteModule`` will have 2 methods with the signatures:
| ``def forward(input: Tensor) -> Tensor:``
| ``def forward_async(input: Tensor) -> Future[Tensor]:``
Args:
remote_device (str): Device on the destination worker where we'd like to place this module.
The format should be "<workername>/<device>", where the device field can be parsed as torch.device type.
E.g., "trainer0/cpu", "trainer0", "ps0/cuda:0".
In addition, the device field can be optional and the default value is "cpu".
module_cls (nn.Module): Class for the module to be created remotely. For example,
>>> class MyModule(nn.Module):
>>> def forward(input):
>>> return input + 1
>>>
>>> module_cls = MyModule
args (Sequence, optional): args to be passed to ``module_cls``.
kwargs (Dict, optional): kwargs to be passed to ``module_cls``.
Returns:
A remote module instance which wraps the :class:`~nn.Module` created by the
user-provided ``module_cls``, it has a blocking ``forward`` method and an
asynchronous ``forward_async`` method that returns a future of the ``forward`` call
on the user-provided module on the remote side.
Example::
Run the following code in two different processes:
>>> # xdoctest: +SKIP("distributed")
>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> from torch import nn, Tensor
>>> from torch.distributed.nn.api.remote_module import RemoteModule
>>>
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> remote_linear_module = RemoteModule(
>>> "worker1/cpu", nn.Linear, args=(20, 30),
>>> )
>>> input = torch.randn(128, 20)
>>> ret_fut = remote_linear_module.forward_async(input)
>>> ret = ret_fut.wait()
>>> rpc.shutdown()
>>> # On worker 1:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>>
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()
Furthermore, a more practical example that is combined with
`DistributedDataParallel <https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel>`__ (DDP)
can be found in this `tutorial <https://pytorch.org/tutorials/advanced/rpc_ddp_tutorial.html>`__.
"""
def __init__(
self,
remote_device: str,
module_cls: Type[nn.Module],
args: Tuple = None,
kwargs: Dict[str, Any] = None,
):
super().__init__(remote_device, module_cls, args, kwargs)
def _remote_module_receiver(
*remote_module_pickled_attrs,
):
"""
Deserializes a RemoteModule.
"""
serialized_remote_module = _SerializedRemoteModule._make(
remote_module_pickled_attrs
)
m = object.__new__(RemoteModule)
m.__dict__.update(serialized_remote_module._asdict())
# Unpickling the attribute `module_rref` must invoke RRef's `_deserialize()` method.
m.module_rref = rpc.PyRRef._deserialize(m.module_rref)
# Install generated methods when unpickled.
for method in m.generated_methods:
method_name = method.__name__
method = torch.jit.export(method)
setattr(m, method_name, types.MethodType(method, m))
return m
def _remote_module_reducer(remote_module):
"""
Serializes a RemoteModule.
"""
pickled_attrs = {}
for k, v in remote_module.__dict__.items():
# Pickling the attribute `module_rref` must invoke RRef's `_serialize()` method.
if k == "module_rref":
pickled_attrs[k] = v._serialize()
elif k in _REMOTE_MODULE_PICKLED_ATTRIBUTES:
pickled_attrs[k] = v
# Check if unpickled attributes are all in _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING.
elif k not in _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING:
print(
"The new attribute ``{}`` of RemoteModule is ignored during RPC pickling. "
"To pickle this attribute, please add it to ``_REMOTE_MODULE_PICKLED_ATTRIBUTES``. "
"Otherwise, please explicitly add it to ``_REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING``.".format(
k
),
file=sys.stderr,
)
return (
_remote_module_receiver,
tuple(pickled_attrs.values()),
)
def _recursive_script_module_receiver(
recursive_script_module_serialized,
):
"""
Deserializes a RecursiveScirptModule that does not contain a script RemoteModule.
"""
f = io.BytesIO(recursive_script_module_serialized)
m = torch.jit.load(f)
return m
def _recursive_script_module_reducer(recursive_script_module):
"""
Serializes a RecursiveScirptModule that does not contain a script RemoteModule,
and raises an error otherwise.
"""
if hasattr(recursive_script_module._c, "module_rref"):
raise RuntimeError(
"Passing a script RemoteModule over RPC is not supported. Please create a RemoteModule in the sender, "
"send the `module_rref` to the receiver, and create a new instance on the receiver end by passing this `module_rref`."
)
f = io.BytesIO()
torch.jit.save(recursive_script_module, f)
return (_recursive_script_module_receiver, (f.getvalue(),))
_internal_rpc_pickler._register_reducer(RemoteModule, _remote_module_reducer)
_internal_rpc_pickler._register_reducer(
torch.jit.RecursiveScriptModule, _recursive_script_module_reducer
)
|