File: functional_adadelta.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (93 lines) | stat: -rw-r--r-- 3,469 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from typing import List, Dict, Optional
import torch
import torch.optim._functional as F

from torch import Tensor

__all__ : List[str] = []

# Define a TorchScript compatible Functional Adadelta Optimizer
# where we use these optimizer in a functional way.
# Instead of using the `param.grad` when updating parameters,
# we explicitly allow the distributed optimizer pass gradients to
# the `step` function. In this way, we could separate the gradients
# and parameters and allow multithreaded trainer to update the
# parameters without data traces on accumulating to the same .grad.
# NOTE: This should be only used by distributed optimizer internals
# and not meant to expose to the user.
@torch.jit.script
class _FunctionalAdadelta(object):
    def __init__(
        self,
        params: List[Tensor],
        lr: float = 1.0,
        rho: float = 0.9,
        eps: float = 1e-6,
        weight_decay: float = 0.0,
        foreach: bool = False,
        maximize: bool = False,
        _allow_empty_param_list: bool = False,
    ):
        self.defaults = {
            "lr": lr,
            "rho": rho,
            "eps": eps,
            "weight_decay": weight_decay,
        }
        self.foreach = foreach
        self.maximize = maximize

        if len(params) == 0 and not _allow_empty_param_list:
            raise ValueError("optimizer got an empty parameter list")

        # NOTE: we only have one param_group and don't allow user to add additional
        # param group as it's not a common use case.
        self.param_group = {"params": params}

        self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})

    def step(self, gradients: List[Optional[Tensor]]):
        params = self.param_group['params']
        params_with_grad = []
        grads = []
        square_avgs = []
        acc_deltas = []
        lr = self.defaults['lr']
        rho = self.defaults['rho']
        eps = self.defaults['eps']
        weight_decay = self.defaults['weight_decay']

        if len(params) != len(gradients):
            raise ValueError(
                "the gradients passed in does not equal to the size of the parameters!"
                + f"Params length: {len(params)}. "
                + f"Gradients length: {len(gradients)}"
            )

        for param, gradient in zip(params, gradients):
            if gradient is not None:
                params_with_grad.append(param)
                grads.append(gradient)
                # Lazy state initialization
                if param not in self.state:
                    self.state[param] = {}
                    state = self.state[param]
                    state['step'] = torch.tensor(0.0)
                    state['square_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
                    state['acc_delta'] = torch.zeros_like(param, memory_format=torch.preserve_format)

                state = self.state[param]
                square_avgs.append(state['square_avg'])
                acc_deltas.append(state['acc_delta'])

        with torch.no_grad():
            F.adadelta(params_with_grad,
                       grads,
                       square_avgs,
                       acc_deltas,
                       lr=lr,
                       rho=rho,
                       eps=eps,
                       weight_decay=weight_decay,
                       foreach=self.foreach,
                       maximize=self.maximize)