1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# Copyright 2019 Kakao Brain
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
"""Tracks the running statistics per mini-batch instead of micro-batch."""
from typing import TypeVar, cast
import torch
from torch import Tensor, nn
from torch.nn.functional import batch_norm
from torch.nn.modules.batchnorm import _BatchNorm
from .checkpoint import is_recomputing
__all__ = ["DeferredBatchNorm"]
TModule = TypeVar("TModule", bound=nn.Module)
class DeferredBatchNorm(_BatchNorm):
"""A BatchNorm layer tracks multiple micro-batches to update running
statistics per mini-batch.
"""
sum: Tensor
sum_squares: Tensor
running_mean: Tensor
running_var: Tensor
num_batches_tracked: Tensor
def __init__(
self,
num_features: int,
eps: float = 1e-5,
momentum: float = 0.1,
affine: bool = True,
chunks: int = 1,
) -> None:
super().__init__(num_features, eps, momentum, affine, track_running_stats=True)
self.register_buffer("sum", torch.zeros_like(self.running_mean))
self.register_buffer("sum_squares", torch.zeros_like(self.running_var))
self.counter = 0
self.tracked = 0
self.chunks = chunks
def _check_input_dim(self, input: Tensor) -> None:
# It's the typical _check_input_dim() implementation in PyTorch.
if input.dim() <= 2:
raise ValueError("expected at least 3D input (got %dD input)" % input.dim())
def _track(self, input: Tensor) -> bool:
"""Tracks statistics of a micro-batch."""
# Dimensions except channel. For example, (0, 2, 3) is for BatchNorm2d.
dim = [0]
dim.extend(range(2, input.dim()))
with torch.no_grad():
self.sum += input.sum(dim)
self.sum_squares += (input ** 2).sum(dim)
size = input.size().numel() // input.size(1)
self.counter += size
self.tracked += 1
return self.tracked == self.chunks
def _commit(self) -> None:
"""Updates the running statistics of a mini-batch."""
exponential_average_factor = 0.0
self.num_batches_tracked += 1
if self.momentum is None: # use cumulative moving average
exponential_average_factor = 1.0 / float(self.num_batches_tracked)
else: # use exponential moving average
exponential_average_factor = self.momentum
mean = self.sum / self.counter
var = self.sum_squares / self.counter - mean ** 2
# Calculate the exponential moving average here.
m = exponential_average_factor
self.running_mean *= 1 - m
self.running_mean += mean * m
self.running_var *= 1 - m
self.running_var += var * m
self.sum.zero_()
self.sum_squares.zero_()
self.counter = 0
self.tracked = 0
def forward(self, input: Tensor) -> Tensor:
if not self.training:
# Don't train parameters on the evaluation mode.
return batch_norm(
input,
running_mean=self.running_mean,
running_var=self.running_var,
weight=self.weight,
bias=self.bias,
training=False,
momentum=0.0,
eps=self.eps,
)
if not is_recomputing():
# Track a micro-batch on the training mode
# but not under a recomputation.
tracked_enough = self._track(input)
# Update the running statistics for a mini-batch
# if it has tracked enough micro-batches.
if tracked_enough:
self._commit()
# Normalize a micro-batch and train the parameters.
return batch_norm(
input,
running_mean=None,
running_var=None,
weight=self.weight,
bias=self.bias,
training=True,
momentum=0.0,
eps=self.eps,
)
@classmethod
def convert_deferred_batch_norm(cls, module: TModule, chunks: int = 1) -> TModule:
"""Converts a :class:`nn.BatchNorm` or underlying
:class:`nn.BatchNorm`s into :class:`DeferredBatchNorm`::
from torchvision.models.resnet import resnet101
from torchpipe.batchnorm import DeferredBatchNorm
model = resnet101()
model = DeferredBatchNorm.convert_deferred_batch_norm(model)
"""
if isinstance(module, DeferredBatchNorm) and module.chunks is chunks:
return cast(TModule, module)
module_output: nn.Module = module
if isinstance(module, _BatchNorm) and module.track_running_stats:
module_output = DeferredBatchNorm(module.num_features, module.eps, module.momentum, module.affine, chunks)
if module.affine:
module_output.register_parameter("weight", module.weight)
module_output.register_parameter("bias", module.bias)
module_output.register_buffer("running_mean", module.running_mean)
module_output.register_buffer("running_var", module.running_var)
module_output.register_buffer("num_batches_tracked", module.num_batches_tracked)
for name, child in module.named_children():
module_output.add_module(name, cls.convert_deferred_batch_norm(child, chunks))
return cast(TModule, module_output)
|