File: binomial.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (137 lines) | stat: -rw-r--r-- 5,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs

__all__ = ['Binomial']

def _clamp_by_zero(x):
    # works like clamp(x, min=0) but has grad at 0 is 0.5
    return (x.clamp(min=0) + x - x.clamp(max=0)) / 2


class Binomial(Distribution):
    r"""
    Creates a Binomial distribution parameterized by :attr:`total_count` and
    either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be
    broadcastable with :attr:`probs`/:attr:`logits`.

    Example::

        >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
        >>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
        >>> x = m.sample()
        tensor([   0.,   22.,   71.,  100.])

        >>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8]))
        >>> x = m.sample()
        tensor([[ 4.,  5.],
                [ 7.,  6.]])

    Args:
        total_count (int or Tensor): number of Bernoulli trials
        probs (Tensor): Event probabilities
        logits (Tensor): Event log-odds
    """
    arg_constraints = {'total_count': constraints.nonnegative_integer,
                       'probs': constraints.unit_interval,
                       'logits': constraints.real}
    has_enumerate_support = True

    def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
        if (probs is None) == (logits is None):
            raise ValueError("Either `probs` or `logits` must be specified, but not both.")
        if probs is not None:
            self.total_count, self.probs, = broadcast_all(total_count, probs)
            self.total_count = self.total_count.type_as(self.probs)
        else:
            self.total_count, self.logits, = broadcast_all(total_count, logits)
            self.total_count = self.total_count.type_as(self.logits)

        self._param = self.probs if probs is not None else self.logits
        batch_shape = self._param.size()
        super(Binomial, self).__init__(batch_shape, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Binomial, _instance)
        batch_shape = torch.Size(batch_shape)
        new.total_count = self.total_count.expand(batch_shape)
        if 'probs' in self.__dict__:
            new.probs = self.probs.expand(batch_shape)
            new._param = new.probs
        if 'logits' in self.__dict__:
            new.logits = self.logits.expand(batch_shape)
            new._param = new.logits
        super(Binomial, new).__init__(batch_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    def _new(self, *args, **kwargs):
        return self._param.new(*args, **kwargs)

    @constraints.dependent_property(is_discrete=True, event_dim=0)
    def support(self):
        return constraints.integer_interval(0, self.total_count)

    @property
    def mean(self):
        return self.total_count * self.probs

    @property
    def mode(self):
        return ((self.total_count + 1) * self.probs).floor().clamp(max=self.total_count)

    @property
    def variance(self):
        return self.total_count * self.probs * (1 - self.probs)

    @lazy_property
    def logits(self):
        return probs_to_logits(self.probs, is_binary=True)

    @lazy_property
    def probs(self):
        return logits_to_probs(self.logits, is_binary=True)

    @property
    def param_shape(self):
        return self._param.size()

    def sample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        with torch.no_grad():
            return torch.binomial(self.total_count.expand(shape), self.probs.expand(shape))

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        log_factorial_n = torch.lgamma(self.total_count + 1)
        log_factorial_k = torch.lgamma(value + 1)
        log_factorial_nmk = torch.lgamma(self.total_count - value + 1)
        # k * log(p) + (n - k) * log(1 - p) = k * (log(p) - log(1 - p)) + n * log(1 - p)
        #     (case logit < 0)              = k * logit - n * log1p(e^logit)
        #     (case logit > 0)              = k * logit - n * (log(p) - log(1 - p)) + n * log(p)
        #                                   = k * logit - n * logit - n * log1p(e^-logit)
        #     (merge two cases)             = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|)
        normalize_term = (self.total_count * _clamp_by_zero(self.logits)
                          + self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits)))
                          - log_factorial_n)
        return value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term

    def entropy(self):
        total_count = int(self.total_count.max())
        if not self.total_count.min() == total_count:
            raise NotImplementedError("Inhomogeneous total count not supported by `entropy`.")

        log_prob = self.log_prob(self.enumerate_support(False))
        return -(torch.exp(log_prob) * log_prob).sum(0)

    def enumerate_support(self, expand=True):
        total_count = int(self.total_count.max())
        if not self.total_count.min() == total_count:
            raise NotImplementedError("Inhomogeneous total count not supported by `enumerate_support`.")
        values = torch.arange(1 + total_count, dtype=self._param.dtype, device=self._param.device)
        values = values.view((-1,) + (1,) * len(self._batch_shape))
        if expand:
            values = values.expand((-1,) + self._batch_shape)
        return values