File: cauchy.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (81 lines) | stat: -rw-r--r-- 2,851 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import math
from torch._six import inf, nan
from numbers import Number

import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all

__all__ = ['Cauchy']

class Cauchy(Distribution):
    r"""
    Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of
    independent normally distributed random variables with means `0` follows a
    Cauchy distribution.

    Example::

        >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
        >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0]))
        >>> m.sample()  # sample from a Cauchy distribution with loc=0 and scale=1
        tensor([ 2.3214])

    Args:
        loc (float or Tensor): mode or median of the distribution.
        scale (float or Tensor): half width at half maximum.
    """
    arg_constraints = {'loc': constraints.real, 'scale': constraints.positive}
    support = constraints.real
    has_rsample = True

    def __init__(self, loc, scale, validate_args=None):
        self.loc, self.scale = broadcast_all(loc, scale)
        if isinstance(loc, Number) and isinstance(scale, Number):
            batch_shape = torch.Size()
        else:
            batch_shape = self.loc.size()
        super(Cauchy, self).__init__(batch_shape, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Cauchy, _instance)
        batch_shape = torch.Size(batch_shape)
        new.loc = self.loc.expand(batch_shape)
        new.scale = self.scale.expand(batch_shape)
        super(Cauchy, new).__init__(batch_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    @property
    def mean(self):
        return torch.full(self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device)

    @property
    def mode(self):
        return self.loc

    @property
    def variance(self):
        return torch.full(self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device)

    def rsample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        eps = self.loc.new(shape).cauchy_()
        return self.loc + eps * self.scale

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return -math.log(math.pi) - self.scale.log() - (1 + ((value - self.loc) / self.scale)**2).log()

    def cdf(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5

    def icdf(self, value):
        return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc

    def entropy(self):
        return math.log(4 * math.pi) + self.scale.log()