File: chi2.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (32 lines) | stat: -rw-r--r-- 992 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from torch.distributions import constraints
from torch.distributions.gamma import Gamma

__all__ = ['Chi2']

class Chi2(Gamma):
    r"""
    Creates a Chi-squared distribution parameterized by shape parameter :attr:`df`.
    This is exactly equivalent to ``Gamma(alpha=0.5*df, beta=0.5)``

    Example::

        >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
        >>> m = Chi2(torch.tensor([1.0]))
        >>> m.sample()  # Chi2 distributed with shape df=1
        tensor([ 0.1046])

    Args:
        df (float or Tensor): shape parameter of the distribution
    """
    arg_constraints = {'df': constraints.positive}

    def __init__(self, df, validate_args=None):
        super(Chi2, self).__init__(0.5 * df, 0.5, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Chi2, _instance)
        return super(Chi2, self).expand(batch_shape, new)

    @property
    def df(self):
        return self.concentration * 2