File: von_mises.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (146 lines) | stat: -rw-r--r-- 5,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import math

import torch
import torch.jit
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all, lazy_property

__all__ = ['VonMises']

def _eval_poly(y, coef):
    coef = list(coef)
    result = coef.pop()
    while coef:
        result = coef.pop() + y * result
    return result


_I0_COEF_SMALL = [1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732, 0.360768e-1, 0.45813e-2]
_I0_COEF_LARGE = [0.39894228, 0.1328592e-1, 0.225319e-2, -0.157565e-2, 0.916281e-2,
                  -0.2057706e-1, 0.2635537e-1, -0.1647633e-1, 0.392377e-2]
_I1_COEF_SMALL = [0.5, 0.87890594, 0.51498869, 0.15084934, 0.2658733e-1, 0.301532e-2, 0.32411e-3]
_I1_COEF_LARGE = [0.39894228, -0.3988024e-1, -0.362018e-2, 0.163801e-2, -0.1031555e-1,
                  0.2282967e-1, -0.2895312e-1, 0.1787654e-1, -0.420059e-2]

_COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL]
_COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE]


def _log_modified_bessel_fn(x, order=0):
    """
    Returns ``log(I_order(x))`` for ``x > 0``,
    where `order` is either 0 or 1.
    """
    assert order == 0 or order == 1

    # compute small solution
    y = (x / 3.75)
    y = y * y
    small = _eval_poly(y, _COEF_SMALL[order])
    if order == 1:
        small = x.abs() * small
    small = small.log()

    # compute large solution
    y = 3.75 / x
    large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log()

    result = torch.where(x < 3.75, small, large)
    return result


@torch.jit.script_if_tracing
def _rejection_sample(loc, concentration, proposal_r, x):
    done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device)
    while not done.all():
        u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device)
        u1, u2, u3 = u.unbind()
        z = torch.cos(math.pi * u1)
        f = (1 + proposal_r * z) / (proposal_r + z)
        c = concentration * (proposal_r - f)
        accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0)
        if accept.any():
            x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x)
            done = done | accept
    return (x + math.pi + loc) % (2 * math.pi) - math.pi


class VonMises(Distribution):
    """
    A circular von Mises distribution.

    This implementation uses polar coordinates. The ``loc`` and ``value`` args
    can be any real number (to facilitate unconstrained optimization), but are
    interpreted as angles modulo 2 pi.

    Example::
        >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
        >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0]))
        >>> m.sample() # von Mises distributed with loc=1 and concentration=1
        tensor([1.9777])

    :param torch.Tensor loc: an angle in radians.
    :param torch.Tensor concentration: concentration parameter
    """
    arg_constraints = {'loc': constraints.real, 'concentration': constraints.positive}
    support = constraints.real
    has_rsample = False

    def __init__(self, loc, concentration, validate_args=None):
        self.loc, self.concentration = broadcast_all(loc, concentration)
        batch_shape = self.loc.shape
        event_shape = torch.Size()

        # Parameters for sampling
        tau = 1 + (1 + 4 * self.concentration ** 2).sqrt()
        rho = (tau - (2 * tau).sqrt()) / (2 * self.concentration)
        self._proposal_r = (1 + rho ** 2) / (2 * rho)

        super(VonMises, self).__init__(batch_shape, event_shape, validate_args)

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        log_prob = self.concentration * torch.cos(value - self.loc)
        log_prob = log_prob - math.log(2 * math.pi) - _log_modified_bessel_fn(self.concentration, order=0)
        return log_prob

    @torch.no_grad()
    def sample(self, sample_shape=torch.Size()):
        """
        The sampling algorithm for the von Mises distribution is based on the following paper:
        Best, D. J., and Nicholas I. Fisher.
        "Efficient simulation of the von Mises distribution." Applied Statistics (1979): 152-157.
        """
        shape = self._extended_shape(sample_shape)
        x = torch.empty(shape, dtype=self.loc.dtype, device=self.loc.device)
        return _rejection_sample(self.loc, self.concentration, self._proposal_r, x)

    def expand(self, batch_shape):
        try:
            return super(VonMises, self).expand(batch_shape)
        except NotImplementedError:
            validate_args = self.__dict__.get('_validate_args')
            loc = self.loc.expand(batch_shape)
            concentration = self.concentration.expand(batch_shape)
            return type(self)(loc, concentration, validate_args=validate_args)

    @property
    def mean(self):
        """
        The provided mean is the circular one.
        """
        return self.loc

    @property
    def mode(self):
        return self.loc

    @lazy_property
    def variance(self):
        """
        The provided variance is the circular one.
        """
        return 1 - (_log_modified_bessel_fn(self.concentration, order=1) -
                    _log_modified_bessel_fn(self.concentration, order=0)).exp()