File: weibull.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (68 lines) | stat: -rw-r--r-- 3,079 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from torch.distributions import constraints
from torch.distributions.exponential import Exponential
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AffineTransform, PowerTransform
from torch.distributions.utils import broadcast_all
from torch.distributions.gumbel import euler_constant

__all__ = ['Weibull']

class Weibull(TransformedDistribution):
    r"""
    Samples from a two-parameter Weibull distribution.

    Example:

        >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
        >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0]))
        >>> m.sample()  # sample from a Weibull distribution with scale=1, concentration=1
        tensor([ 0.4784])

    Args:
        scale (float or Tensor): Scale parameter of distribution (lambda).
        concentration (float or Tensor): Concentration parameter of distribution (k/shape).
    """
    arg_constraints = {'scale': constraints.positive, 'concentration': constraints.positive}
    support = constraints.positive

    def __init__(self, scale, concentration, validate_args=None):
        self.scale, self.concentration = broadcast_all(scale, concentration)
        self.concentration_reciprocal = self.concentration.reciprocal()
        base_dist = Exponential(torch.ones_like(self.scale), validate_args=validate_args)
        transforms = [PowerTransform(exponent=self.concentration_reciprocal),
                      AffineTransform(loc=0, scale=self.scale)]
        super(Weibull, self).__init__(base_dist,
                                      transforms,
                                      validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Weibull, _instance)
        new.scale = self.scale.expand(batch_shape)
        new.concentration = self.concentration.expand(batch_shape)
        new.concentration_reciprocal = new.concentration.reciprocal()
        base_dist = self.base_dist.expand(batch_shape)
        transforms = [PowerTransform(exponent=new.concentration_reciprocal),
                      AffineTransform(loc=0, scale=new.scale)]
        super(Weibull, new).__init__(base_dist,
                                     transforms,
                                     validate_args=False)
        new._validate_args = self._validate_args
        return new

    @property
    def mean(self):
        return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal))

    @property
    def mode(self):
        return self.scale * ((self.concentration - 1) / self.concentration) ** self.concentration.reciprocal()

    @property
    def variance(self):
        return self.scale.pow(2) * (torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) -
                                    torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal)))

    def entropy(self):
        return euler_constant * (1 - self.concentration_reciprocal) + \
            torch.log(self.scale * self.concentration_reciprocal) + 1