1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
from typing import Dict, List, Set, Iterable, Optional
from torch.fx.passes.utils.fuser_utils import fuse_by_partitions
from torch.fx.passes.tools_common import NodeList
from torch.fx.graph_module import GraphModule
from torch.fx.node import Node, _get_qualified_name
from torch.fx.passes.operator_support import OperatorSupportBase
from collections import defaultdict
import logging
import itertools
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
class Partition:
def __init__(self, id: int = None, nodes: Iterable[Node] = None):
self.id = id
self.nodes: Set[Node] = set(nodes) if nodes is not None else set()
def __repr__(self) -> str:
return str(self.nodes)
def add_node(self, node: Node):
self.nodes.add(node)
def remove_node(self, node: Node):
self.nodes.remove(node)
def size(self):
return len(self.nodes)
class CapabilityBasedPartitioner:
def __init__(self,
graph_module: GraphModule,
operator_support: OperatorSupportBase,
allows_single_node_partition: bool = False
) -> None:
self.graph_module = graph_module
self.operator_support = operator_support
self.allows_single_node_partition = allows_single_node_partition
# map of node to it's upstream dependency nodes
# if A is found in dependency_map[B], then B depends on A (or a is an upstream depedency of b)
self.dependency_map = self.__build_dependency_map()
def __build_dependency_map(self) -> Dict[Node, Set[Node]]:
dependency_map = defaultdict(set)
# assumptions: nodes in graph are sorted in topological order
for node in self.graph_module.graph.nodes:
for input_node in node.all_input_nodes:
# add input_node and input_node's upstream dependency
dependency_map[node].add(input_node)
dependency_map[node].update(dependency_map[input_node])
return dependency_map
def __node_depends_on(self, a: Node, b: Node) -> int:
# Returns
# 1 if b depends on a (,or equivalently a is an upstream depedency of b)
# -1 if a depends on b (,or equivalently b is an upstream depedency of a)
# 0 if a and b doesn't have dependency between each other
if a in self.dependency_map[b]:
return 1
elif b in self.dependency_map[a]:
return -1
else:
return 0
def __partition_depends_on(self, partition_a: Partition, partition_b: Partition) -> int:
# Returns
# 1 if b depends on a (,or equivalently a is an upstream depedency of b)
# -1 if a depends on b (,or equivalently b is an upstream depedency of a)
# 0 if a and b doesn't have dependency between each other
# TODO: build a cache here to speedup the query
for node_a in partition_a.nodes:
for node_b in partition_b.nodes:
dependency = self.__node_depends_on(node_a, node_b)
if dependency != 0:
return dependency
return 0
def __get_supported_nodes(self) -> NodeList:
logging.debug("Collecting supported nodes...")
supported_nodes = []
for node in self.graph_module.graph.nodes:
if self.operator_support.is_node_supported(dict(self.graph_module.named_modules()), node):
supported_nodes.append(node)
return supported_nodes
def propose_partitions(self) -> List[Partition]:
candidates: NodeList = self.__get_supported_nodes()
# assumptions: nodes in candidate list is sorted in topological order
assignment: Dict[Node, int] = {} # maping from node to partition_id
partitions_by_id: Dict[int, Partition] = {} # mapping from partition_id to partition
new_partition_id = itertools.count()
def assign(node: Node, id: Optional[int] = None):
# If id is None, remove the node from original assigment
# node has been assigned before, clean up and re-assign
if node in assignment:
original_id = assignment[node]
del assignment[node]
partitions_by_id[original_id].remove_node(node)
if partitions_by_id[original_id].size() == 0:
del partitions_by_id[original_id]
if id is not None:
assignment[node] = id
if id not in partitions_by_id:
partitions_by_id[id] = Partition(id=id, nodes=[node])
else:
partitions_by_id[id].add_node(node)
logger.debug("Proposing partitions...")
# visit candidates in reversed topological order
for node in reversed(candidates):
# use Dict as an ordered set to ensure deterministic partitioning result, don't care value
user_partitions: Dict[Partition, None] = {}
for user_node in node.users:
if user_node in assignment:
id = assignment[user_node]
user_partitions[partitions_by_id[id]] = None
else:
user_partitions[Partition(nodes=[user_node])] = None
# Filter out all the partitions that has dependency on other users
# TODO: find a better way to do this, rather than pair-wise comparision
user_partitions_list = list(user_partitions.keys())
for i in range(len(user_partitions_list)):
for j in range(i + 1, len(user_partitions_list)):
pi = user_partitions_list[i]
pj = user_partitions_list[j]
dependency = self.__partition_depends_on(pi, pj)
if dependency == 1 and pj in user_partitions:
del user_partitions[pj]
elif dependency == -1 and pi in user_partitions:
del user_partitions[pi]
# We use the following rules for partition assignment:
# 1. If none of the candidates has been assigned to a partition, create a new partition
# 2. If there is one partition candidate, assign to the partition
# 3. If there are more than one partition candidates, assign current node to the first partition and
# merge the other partitions with first partition, since user_partitions doesn't have depedency between
# each other.
assigned_candidate_partition_ids = [partition.id for partition in user_partitions if partition.id is not None]
if len(assigned_candidate_partition_ids) == 0:
# create a new partition
assign(node, next(new_partition_id))
elif len(assigned_candidate_partition_ids) == 1:
id = assigned_candidate_partition_ids[0]
assign(node, id)
else:
# users are assigned to more than one partition, since user_partitions doesn't have
# dependency on each other, they can be fused into a single partition
id = assigned_candidate_partition_ids[0]
assign(node, id)
reassignment: Dict[Node, int] = {}
for other_id in assigned_candidate_partition_ids[1:]:
for other_node in partitions_by_id[other_id].nodes:
reassignment[other_node] = id
for other_node in reassignment:
assign(other_node, id)
# post processing to re-assign "getitem" nodes into upstream partition
logger.debug("Reassigning getitem nodes to its producer node's partition...")
nodes_reassignment: Dict[Node, int] = {}
for node in self.graph_module.graph.nodes:
is_tuple_output = True
for user in node.users:
if user.op != "call_function" or \
_get_qualified_name(user.target) != "_operator.getitem": # type: ignore[arg-type]
is_tuple_output = False
break
# node has tuple outputs, re-assign all following getitem node into node's partition
if is_tuple_output:
id = assignment.get(node, None) # type: ignore[arg-type]
for user in node.users:
if assignment.get(user, None) != id: # type: ignore[arg-type]
nodes_reassignment[user] = id
for node, id in nodes_reassignment.items():
assign(node, id)
# filter out single node partitions
if not self.allows_single_node_partition:
logger.debug("Filtering out single node partitions...")
non_compute_ops = {"torch.ops.aten.view", "_operator.getitem"}
partitions_to_remove: List[int] = []
for id, partition in partitions_by_id.items():
compute_node_count = 0
for node in partition.nodes:
if node.op == "call_function" and \
_get_qualified_name(node.target) not in non_compute_ops: # type: ignore[arg-type]
compute_node_count += 1
if compute_node_count <= 1:
partitions_to_remove.append(id)
for id in partitions_to_remove:
del partitions_by_id[id]
logger.debug("Partitions proposed:")
for id, partition in partitions_by_id.items():
logger.debug(f"partition #{id}", [node.name for node in partition.nodes])
return list(partitions_by_id.values())
def fuse_partitions(self, partitions: List[Partition]) -> GraphModule:
logger.debug("Fusing partitions...")
# fuse_by_partitions expects partitions in List[List[Node]]: [ [node0, node1], [node2, node3] ]
return fuse_by_partitions(self.graph_module, [list(partition.nodes) for partition in partitions])
def partition_and_fuse(self) -> GraphModule:
partitions = self.propose_partitions()
fused_gm = self.fuse_partitions(partitions)
return fused_gm
|