File: shape_prop.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (152 lines) | stat: -rw-r--r-- 5,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.fx
import traceback

from torch.fx.node import Node, map_aggregate
from typing import Any, Tuple, NamedTuple, Optional, Dict
from torch.fx._compatibility import compatibility

__all__ = ['TensorMetadata', 'ShapeProp']

@compatibility(is_backward_compatible=True)
class TensorMetadata(NamedTuple):
    # TensorMetadata is a structure containing pertinent information
    # about a tensor within a PyTorch program.

    # General Tensor metadata
    shape : torch.Size
    dtype : torch.dtype
    requires_grad : bool
    stride : Tuple[int]
    memory_format : Optional[torch.memory_format]

    # Quantization metadata
    is_quantized : bool
    qparams: Dict[str, Any]

def _extract_tensor_metadata(result : torch.Tensor) -> TensorMetadata:
    """
    Extract a TensorMetadata NamedTuple describing `result`.
    """
    shape = result.shape
    dtype = result.dtype
    requires_grad = result.requires_grad
    stride = result.stride()

    memory_formats = {
        torch.contiguous_format,
        torch.channels_last,
        torch.channels_last_3d,
    }

    memory_format = None

    for query_format in memory_formats:
        if result.is_contiguous(memory_format=query_format):
            memory_format = query_format
            break

    is_quantized = result.is_quantized
    qparams: Dict[str, Any] = {}
    if is_quantized:
        qscheme = result.qscheme()
        qparams["qscheme"] = qscheme
        if qscheme in {torch.per_tensor_affine, torch.per_tensor_symmetric}:
            qparams["scale"] = result.q_scale()  # type: ignore[assignment]
            qparams["zero_point"] = result.q_zero_point()  # type: ignore[assignment]
        elif qscheme in {torch.per_channel_affine, torch.per_channel_affine_float_qparams, torch.per_channel_symmetric}:
            # In this branch, scale and zero_point are expected to be tensors,
            # we store the values as immutable_list in TensorMetadata for
            # easier serialization downstream
            qparams["scale"] = result.q_per_channel_scales().tolist()  # type: ignore[assignment]
            qparams["zero_point"] = result.q_per_channel_zero_points().tolist()  # type: ignore[assignment]
            qparams["axis"] = result.q_per_channel_axis()  # type: ignore[assignment]

    return TensorMetadata(
        shape, dtype, requires_grad, stride, memory_format, is_quantized, qparams)

@compatibility(is_backward_compatible=True)
class ShapeProp(torch.fx.Interpreter):
    """
    Execute an FX graph Node-by-Node and
    record the shape and type of the result
    into the corresponding node.

    Example:
         In this example, we record the shape
         and data type of a module given
         an example input ``torch.randn(50, D_in)``.
         We print the name, shape and dtype of each node.

        class TwoLayerNet(torch.nn.Module):
            def __init__(self, D_in, H, D_out):
                super(TwoLayerNet, self).__init__()
                self.linear1 = torch.nn.Linear(D_in, H)
                self.linear2 = torch.nn.Linear(H, D_out)
            def forward(self, x):
                h_relu = self.linear1(x).clamp(min=0)
                y_pred = self.linear2(h_relu)
                return y_pred
        N, D_in, H, D_out = 64, 1000, 100, 10
        x = torch.randn(N, D_in)
        y = torch.randn(N, D_out)
        model = TwoLayerNet(D_in, H, D_out)
        gm = torch.fx.symbolic_trace(model)
        sample_input = torch.randn(50, D_in)
        ShapeProp(gm).propagate(sample_input)

        for node in gm.graph.nodes:
            print(node.name, node.meta['tensor_meta'].dtype,
                node.meta['tensor_meta'].shape)

        The output of this code is:

        x torch.float32 torch.Size([50, 1000])
        linear1 torch.float32 torch.Size([50, 100])
        clamp_1 torch.float32 torch.Size([50, 100])
        linear2 torch.float32 torch.Size([50, 10])
        output torch.float32 torch.Size([50, 10])

    Args:
         module (GraphModule): The module to be executed

    """
    def run_node(self, n : Node) -> Any:
        try:
            result = super().run_node(n)
        except Exception:
            traceback.print_exc()
            raise RuntimeError(
                f"ShapeProp error for: node={n.format_node()} with "
                f"meta={n.meta}"
            )

        found_tensor = False

        def extract_tensor_meta(obj):
            if isinstance(obj, torch.Tensor):
                nonlocal found_tensor
                found_tensor = True
                return _extract_tensor_metadata(obj)
            else:
                return obj

        meta = map_aggregate(result, extract_tensor_meta)
        if found_tensor:
            n.meta['tensor_meta'] = meta

        n.meta['type'] = type(result)
        return result

    def propagate(self, *args):
        """
        Run `module` via interpretation and return the result and
        record the shape and type of each node.

        Args:
            *args (Tensor): the sample input.

        Returns:
            Any: The value returned from executing the Module
        """
        return super().run(*args)