File: _property_propagation.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (41 lines) | stat: -rw-r--r-- 1,375 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
Tools to help with tensor property propagation.

This is not intended to be imported directly; please use the exposed
functionalities in `torch.jit`.
"""

from typing import Any, List

import torch
from torch import TensorType
from torch._C import Graph


def apply_input_props_using_example(graph: Graph, example_input: List[Any]):
    """
    Applies properties for each tensor in the graph inputs
    using the example supplied.
    """
    graph_inputs = list(graph.inputs())
    if len(graph_inputs) == 0:
        return

    # Strip self args off for methods
    in_0 = graph_inputs[0]
    if isinstance(in_0.type(), torch._C.ClassType) and in_0.debugName() == "self":
        graph_inputs = graph_inputs[1:]

    if not len(graph_inputs) == len(example_input):
        raise RuntimeError(
            "Number of inputs in graph does not match number of inputs in the example")

    for i, (graph_i, example_i) in enumerate(zip(graph_inputs, example_input)):
        if example_i is None:
            continue  # Skip the type check

        if isinstance(example_i, torch.Tensor) != isinstance(graph_i.type(), TensorType):
            raise RuntimeError(f"Input {i} does not match type of example", graph_i, example_i)

        if isinstance(example_i, torch.Tensor):
            graph_i.setType(TensorType.create_from_tensor(example_i))  # type: ignore[arg-type]