1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
|
#pragma once
/// \file
///
/// This header provides an API for extending PyTorch's core library
/// of operators with user defined operators and data types. This
/// API can be used in a few ways:
///
/// * You can define new custom operators and classes with TORCH_LIBRARY(),
/// making them available for use in both eager Python as well as in
/// TorchScript. This API is modeled off of pybind11's `PYBIND11_MODULE`
/// macro, as the provided functionality is similar (pybind11 lets you bind
/// C++ to Python only; `torch/library.h` lets you bind C++ simultaneously to
/// Python and TorchScript).
///
/// * You can override existing operators with TORCH_LIBRARY_IMPL(),
/// providing a new implementation for these operators for a custom
/// backend (e.g., XLA). When you pass operators with tensors of your custom
/// backend, your overridden implementations will be called instead
/// of the standard implementations.
///
/// * You can use both capabilities at the same time, allowing you
/// to write custom operators that register CPU/CUDA/Autograd
/// implementations without having to write the boilerplate
/// conditionals yourself.
///
/// For a tutorial style introduction to the library API, check
/// out the [Extending TorchScript with Custom C++
/// Operators](https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html)
/// tutorial.
///
/// ```
/// // Define a library whose operators live in the namespace 'myops'.
/// // You must define all of the operators for this library in
/// // this namespace.
/// TORCH_LIBRARY(myops, m) {
/// // Define a operator with exactly one implementation for all backends.
/// m.def("add(Tensor self, Tensor other) -> Tensor", &add_impl);
///
/// // Define a schema for an operator, but provide no implementation
/// // (use this syntax if you want to use the dispatcher)
/// m.def("mul(Tensor self, Tensor other) -> Tensor");
///
/// // Provide an implementation for a defined operator (you can
/// // provide multiple; one per backend). The dispatcher takes care of
/// // calling the correct implementation depending on if we get a CPU
/// // tensor or a CUDA tensor
/// m.impl("mul", torch::kCPU, &mul_cpu_impl);
/// m.impl("mul", torch::kCUDA, &mul_cuda_impl);
/// }
///
/// // Define implementations for operators for a non-standard backend,
/// // e.g., XLA (valid values are entries of DispatchKey). This can
/// // be used to define operators in a different file than the initial
/// // TORCH_LIBRARY definition (e.g., if it is in an external library)
/// TORCH_LIBRARY_IMPL(myops, XLA, m) {
/// m.impl("mul", &mul_xla_impl);
/// }
/// ```
#include <ATen/core/op_registration/infer_schema.h>
#include <ATen/core/op_registration/op_allowlist.h>
#include <c10/core/DispatchKey.h>
#include <torch/csrc/jit/frontend/function_schema_parser.h>
// Just for inferFunctionSchemaFromFunctor
#include <ATen/core/op_registration/op_registration.h>
#include <ATen/core/enum_tag.h>
namespace torch {
#if defined C10_MOBILE
/**
* The NoInferSchemaTag is a type name used to indicate that this call to the
* CppFunction constructor should not trigger schema inference from functor.
* Schema inference from functor utilizes template meta-programming, and is
* costly from a size perspective. Ideally, one would expect that the schema
* inference would require very little binary size since most of the
* computation can be done by the compiler at build time, but that isn't
* necessarily the case.
*
* Schema inference is elided only for mobile use-cases where we don't need
* the additional runtime cost or size overhead on client devices.
*
*/
struct NoInferSchemaTag {};
#endif
template <class CurClass>
class class_;
/// Represents a C++ function that implements an operator. Most users won't
/// interact directly with this class, except via error messages: the
/// constructors this function define the set of permissible "function"-like
/// things you can bind via the interface.
///
/// This class erases the type of the passed in function, but durably records
/// the type via an inferred schema for the function.
class TORCH_API CppFunction final {
// TODO: This is morally the same thing as KernelRegistrationConfig, but it's
// opaque to the user.
public:
/// This overload accepts function pointers, e.g., `CppFunction(&add_impl)`
template <typename Func>
explicit CppFunction(
Func* f,
std::enable_if_t<
c10::guts::is_function_type<Func>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedRuntimeFunction(f)),
cpp_signature_(c10::impl::CppSignature::make<Func>()),
schema_(
c10::detail::inferFunctionSchemaFromFunctor<std::decay_t<Func>>()),
debug_() {}
/// This overload accepts compile time function pointers, e.g.,
/// `CppFunction(TORCH_FN(add_impl))`
template <typename FuncPtr>
explicit CppFunction(
FuncPtr f,
std::enable_if_t<
c10::is_compile_time_function_pointer<FuncPtr>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedFunction(f)),
cpp_signature_(
c10::impl::CppSignature::make<typename FuncPtr::FuncType>()),
schema_(c10::detail::inferFunctionSchemaFromFunctor<
typename FuncPtr::FuncType>()),
debug_() {}
/// This overload accepts lambdas, e.g., `CppFunction([](const Tensor& self) {
/// ... })`
template <typename Lambda>
explicit CppFunction(
Lambda&& f,
std::enable_if_t<
c10::guts::is_functor<std::decay_t<Lambda>>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedLambda(
std::forward<Lambda>(f))),
cpp_signature_(c10::impl::CppSignature::make<Lambda>()),
schema_(c10::detail::inferFunctionSchemaFromFunctor<
std::decay_t<Lambda>>()),
debug_() {}
#if defined C10_MOBILE
/// This overload accepts function pointers, e.g., `CppFunction(&add_impl,
/// NoInferSchemaTag())`
template <typename Func>
explicit CppFunction(
Func* f,
NoInferSchemaTag,
std::enable_if_t<
c10::guts::is_function_type<Func>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedRuntimeFunction(f)),
cpp_signature_(c10::impl::CppSignature::make<Func>())
// TODO: Don't go through WrapRuntimeKernelFunctor
,
schema_(nullptr),
debug_() {}
/// This overload accepts compile time function pointers, e.g.,
/// `CppFunction(TORCH_FN(add_impl), NoInferSchemaTag())`
template <typename FuncPtr>
explicit CppFunction(
FuncPtr f,
NoInferSchemaTag,
std::enable_if_t<
c10::is_compile_time_function_pointer<FuncPtr>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedFunction(f)),
cpp_signature_(
c10::impl::CppSignature::make<typename FuncPtr::FuncType>())
// TODO: Don't go through WrapRuntimeKernelFunctor
,
schema_(nullptr),
debug_() {}
/// This overload accepts lambdas, e.g., `CppFunction([](const Tensor& self) {
/// ... }. NoInferSchemaTag())`
template <typename Lambda>
explicit CppFunction(
Lambda&& f,
NoInferSchemaTag,
std::enable_if_t<
c10::guts::is_functor<std::decay_t<Lambda>>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedLambda(
std::forward<Lambda>(f))),
cpp_signature_(c10::impl::CppSignature::make<Lambda>())
// TODO: Don't go through WrapRuntimeKernelFunctor
,
schema_(nullptr),
debug_() {}
#endif
~CppFunction();
CppFunction(CppFunction&&) noexcept = default;
CppFunction& operator=(CppFunction&&) = default;
/// \private
/// Creates a function from a type-erased boxed kernel.
static CppFunction makeFromBoxedKernel(c10::BoxedKernel kernel) {
return CppFunction(
c10::KernelFunction::makeFromBoxedKernel(std::move(kernel)),
/* cpp_signature */ c10::nullopt, // not known for boxed functions
/* schema */ nullptr);
}
/// This creates a fallthrough function. Fallthrough functions
/// immediately redispatch to the next available dispatch key,
/// but are implemented more efficiently than a hand written
/// function done in the same way.
static CppFunction makeFallthrough() {
return makeFromBoxedKernel(c10::BoxedKernel::makeFallthrough());
}
/// \private
///
/// Creates a function that raises an error saying that named tensors
/// are not supported when called.
static CppFunction makeNamedNotSupported() {
return makeFromBoxedKernel(c10::BoxedKernel::makeNamedNotSupported());
}
/// Create a function from a boxed kernel function with signature
/// `void(const OperatorHandle&, Stack*)`; i.e., they receive a
/// stack of arguments in a boxed calling convention, rather than
/// in the native C++ calling convention. Boxed functions are
/// typically only used to register backend fallbacks via
/// torch::Library::fallback().
template <c10::BoxedKernel::BoxedKernelFunction* func>
static CppFunction makeFromBoxedFunction() {
return makeFromBoxedKernel(
c10::BoxedKernel::makeFromFunction<func>());
}
// Variant that takes in a boxed kernel function with a plumbed
// DispatchKeySet. See Note [Plumbing Keys Through The Dispatcher] for
// details.
template <c10::BoxedKernel::BoxedKernelFunction_withDispatchKeys* func>
static CppFunction makeFromBoxedFunction() {
return makeFromBoxedKernel(
c10::BoxedKernel::makeFromFunction<func>());
}
/// Create a function from a boxed kernel functor which defines
/// `operator()(const OperatorHandle&, DispatchKeySet, Stack*)`
/// (receiving arguments from boxed calling convention) and inherits
/// from `c10::OperatorKernel`. Unlike makeFromBoxedFunction, functions
/// registered in this way can also carry additional state which
/// is managed by the functor; this is useful if you're writing an
/// adapter to some other implementation, e.g., a Python callable, which
/// is dynamically associated with the registered kernel.
template <class KernelFunctor>
static CppFunction makeFromBoxedFunctor(
std::unique_ptr<KernelFunctor> kernelFunctor) {
return makeFromBoxedKernel(
c10::BoxedKernel::makeFromFunctor(std::move(kernelFunctor)));
}
/// Create a function from an unboxed kernel function.
/// This is typically used to register common operators.
template <
typename FuncPtr,
std::enable_if_t<
c10::guts::is_function_type<FuncPtr>::value,
std::nullptr_t> = nullptr>
static CppFunction makeFromUnboxedFunction(FuncPtr* f) {
return CppFunction(f);
}
/// Create a function from a compile time unboxed kernel function pointer.
/// This is typically used to register common operators.
/// Compile time function pointers can be used to allow the compiler
/// to optimize (e.g. inline) calls to it.
template <
typename FuncPtr,
std::enable_if_t<
c10::is_compile_time_function_pointer<FuncPtr>::value,
std::nullptr_t> = nullptr>
static CppFunction makeFromUnboxedFunction(FuncPtr f) {
return CppFunction(f);
}
CppFunction&& debug(std::string d) && {
debug_ = std::move(d);
return std::move(*this);
}
private:
c10::optional<c10::DispatchKey> dispatch_key_;
c10::KernelFunction func_;
c10::optional<c10::impl::CppSignature> cpp_signature_;
std::unique_ptr<c10::FunctionSchema> schema_;
std::string debug_;
// The "setter" for dispatch_key_
template <typename Func>
friend CppFunction dispatch(c10::DispatchKey, Func&&);
// The only class which actually pulls out values from CppFunction (does so
// destructively, felt too lazy to write accessors that I don't even
// want users to use)
friend class Library;
CppFunction(
c10::KernelFunction func,
c10::optional<c10::impl::CppSignature> cpp_signature,
std::unique_ptr<c10::FunctionSchema> schema);
};
/// \defgroup torch-dispatch-overloads torch::dispatch overloads
/// Create a torch::CppFunction which is associated with a specific
/// dispatch key. torch::CppFunctions that are tagged with a
/// c10::DispatchKey don't get invoked unless the dispatcher determines
/// that this particular c10::DispatchKey is the one that should be
/// dispatched to.
///
/// This function is generally not used directly, instead, prefer using
/// TORCH_LIBRARY_IMPL(), which will implicitly set the c10::DispatchKey
/// for all registration calls inside of its body.
///
/// \ingroup torch-dispatch-overloads
template <typename Func>
inline CppFunction dispatch(c10::DispatchKey k, Func&& raw_f) {
CppFunction f(std::forward<Func>(raw_f));
if (k == c10::DispatchKey::CatchAll) {
f.dispatch_key_ = c10::nullopt;
} else {
f.dispatch_key_ = k;
}
return f;
}
/// Convenience overload of dispatch() which accepts c10::DeviceType
///
/// \ingroup torch-dispatch-overloads
template <typename Func>
inline CppFunction dispatch(c10::DeviceType type, Func&& raw_f) {
auto deviceTypeToDispatchKey = [](c10::DeviceType t) {
switch (t) {
// This list is synchronized with the k-constants in c10/core/DeviceType.h
case c10::DeviceType::CPU:
return c10::DispatchKey::CPU;
case c10::DeviceType::CUDA:
return c10::DispatchKey::CUDA;
case c10::DeviceType::IPU:
return c10::DispatchKey::IPU;
case c10::DeviceType::XLA:
return c10::DispatchKey::XLA;
case c10::DeviceType::Lazy:
return c10::DispatchKey::Lazy;
case c10::DeviceType::MPS:
return c10::DispatchKey::MPS;
case c10::DeviceType::Meta:
return c10::DispatchKey::Meta;
case c10::DeviceType::HIP:
return c10::DispatchKey::HIP;
case c10::DeviceType::ORT:
return c10::DispatchKey::ORT;
case c10::DeviceType::HPU:
return c10::DispatchKey::HPU;
case c10::DeviceType::PrivateUse1:
return c10::DispatchKey::PrivateUse1;
default:
TORCH_CHECK(
false,
"Device type ",
t,
" cannot be overloaded at dispatch time, "
"please file a bug report explaining what you were trying to do.");
}
};
return dispatch(deviceTypeToDispatchKey(type), std::forward<Func>(raw_f));
}
/// \defgroup torch-schema-overloads torch::schema overloads
/// Construct a c10::FunctionSchema from a string, with an explicitly
/// specified c10::AliasAnalysisKind. Ordinarily, schemas are simply
/// passed in as strings, but if you need to specify a custom alias
/// analysis, you can replace the string with a call to this function.
///
/// ```
/// // Default alias analysis (FROM_SCHEMA)
/// m.def("def3(Tensor self) -> Tensor");
/// // Pure function alias analysis
/// m.def(torch::schema("def3(Tensor self) -> Tensor",
/// c10::AliasAnalysisKind::PURE_FUNCTION));
/// ```
///
/// \ingroup torch-schema-overloads
inline c10::FunctionSchema schema(const char* str, c10::AliasAnalysisKind k) {
c10::FunctionSchema s = torch::jit::parseSchema(str);
s.setAliasAnalysis(k);
return s;
}
/// Function schemas can be directly constructed from string literals.
///
/// \ingroup torch-schema-overloads
inline c10::FunctionSchema schema(const char* s) {
return schema(s, c10::AliasAnalysisKind::FROM_SCHEMA);
}
/// \private
///
/// Already constructed function schemas are accepted if they are
/// rvalues.
///
/// \ingroup torch-schema-overloads
inline c10::FunctionSchema&& schema(c10::FunctionSchema&& s) {
return std::move(s);
}
namespace detail {
inline c10::either<c10::OperatorName, c10::FunctionSchema> constructSchemaOrName(
c10::FunctionSchema&& s) {
return c10::make_right<c10::OperatorName, c10::FunctionSchema>(std::move(s));
}
inline c10::either<c10::OperatorName, c10::FunctionSchema> constructSchemaOrName(
c10::OperatorName&& n) {
return c10::make_left<c10::OperatorName, c10::FunctionSchema>(std::move(n));
}
inline c10::either<c10::OperatorName, c10::FunctionSchema> constructSchemaOrName(
const char* str) {
auto s = torch::jit::parseSchemaOrName(str);
if (s.is_right()) {
s.right().setAliasAnalysis(c10::AliasAnalysisKind::FROM_SCHEMA);
}
return s;
}
class TorchLibraryInit;
} // namespace detail
// Note [Selective build]
// ~~~~~~~~~~~~~~~~~~~~~~
// In some settings, especially mobile, it is important to avoid compiling any
// references to functions that you aren't actually going to use, so that they
// can be eliminated by the linker. We call this capability "selective build".
//
// A very easy way to implement selective build which results in a lot of
// boilerplate is to just add ifdef's around every registration call, but this
// means you have to write a lot of extra lines of code at every registration
// site, and it also means you have to define some munging scheme to map
// operators to macros.
//
// Instead of doing this, we have a different mechanism centered around the
// concept of a SelectiveStr. A selective name is like a const char* string,
// except it also carries at compile time a boolean saying whether or not a
// registration should actually happen or not. We then have extra overloads
// which bypass registration entirely if a selective name is disabled. We do a
// constexpr test to see if a operator should be enabled or not; this is
// currently implemented in ATen/core/op_registration/op_allowlist.h
namespace detail {
// dummy class for non selected custom torchbind classes
class ClassNotSelected {
public:
ClassNotSelected& def_pickle(...) {
return *this;
}
ClassNotSelected& def(...) {
return *this;
}
};
// A SelectiveStr is like a const char*, except that it also comes
// with a type brand that says whether or not the name is enabled or
// not. If the string is disabled, then (at compile time) we DON'T generate
// a registration call for it. This class is not intended to be called
// directly; use TORCH_SELECTIVE_NAME or TORCH_SELECTIVE_SCHEMA macros below
// to create it.
template <bool enabled>
class SelectiveStr {
public:
constexpr explicit SelectiveStr(const char* name) : name_(name) {}
constexpr operator const char*() {
return name_;
}
private:
const char* name_;
};
#define TORCH_SELECTIVE_CLASS(n) \
torch::detail::SelectiveStr<c10::impl::custom_class_allowlist_check(n)>(n)
#define TORCH_SELECTIVE_NAME(n) \
torch::detail::SelectiveStr<c10::impl::op_allowlist_check(n)>(n)
#define TORCH_SELECTIVE_SCHEMA(n) \
torch::detail::SelectiveStr<c10::impl::schema_allowlist_check(n)>(n)
} // namespace detail
/// This object provides the API for defining operators and providing
/// implementations at dispatch keys. Typically, a torch::Library
/// is not allocated directly; instead it is created by the
/// TORCH_LIBRARY() or TORCH_LIBRARY_IMPL() macros.
///
/// Most methods on torch::Library return a reference to itself,
/// supporting method chaining.
///
/// ```
/// // Examples:
///
/// TORCH_LIBRARY(torchvision, m) {
/// // m is a torch::Library
/// m.def("roi_align", ...);
/// ...
/// }
///
/// TORCH_LIBRARY_IMPL(aten, XLA, m) {
/// // m is a torch::Library
/// m.impl("add", ...);
/// ...
/// }
/// ```
///
class TORCH_API Library final {
public:
/// \private
///
/// Which type of macro produced this Library
enum Kind {
DEF, // from TORCH_LIBRARY (no qualifier)
IMPL,
FRAGMENT,
};
/// \private
///
/// Use TORCH_LIBRARY() or TORCH_LIBRARY_IMPL() instead of using these
/// constructors directly
Library(
Kind kind,
std::string ns,
c10::optional<c10::DispatchKey> k,
const char* file,
uint32_t line);
Library(const Library&) = delete;
Library& operator=(const Library&) = delete;
Library(Library&&) = default;
Library& operator=(Library&&) = default;
// Some notes about the API design here. We had the following constraints:
//
// - We need to support multiple "types" of arguments for schema and
// functions (e.g., unnamed lambda types, regular functions, const char*,
// fully instantiated schemas)
// - We don't want to write exponentially many overloads
// - We don't want to rely on implicit conversion to a common type,
// because the C++ compiler will only be willing to do a single
// implicit conversion (reducing the set of valid types which you
// can invoke with); also error messages are worse when an implicit
// conversion is not selected (as the compiler will not explain
// why it didn't select an implicit conversion; this is different
// from overloads where it will explain each candidate overload and
// why it didn't apply)
//
// To solve all of these constraints at the same time, we use a trick taken
// from the pybind11 library: template over the argument in the user visible
// API, and inside of the templated function explicitly call an overloaded
// function to resolve the argument to a real type. You get the good error
// messages from overloads, but at the same time you only need to write the
// overload for any given argument type once.
/// Declare an operator with a schema, but don't provide any implementations
/// for it. You're expected to then provide implementations using the
/// impl() method. All template arguments are inferred.
///
/// \param raw_schema The schema of the operator to be defined.
/// Typically, this is a `const char*` string literal, but any type
/// accepted by torch::schema() is accepted here.
///
/// ```
/// // Example:
/// TORCH_LIBRARY(myops, m) {
/// m.def("add(Tensor self, Tensor other) -> Tensor");
/// }
/// ```
template <typename Schema>
Library& def(Schema&& raw_schema, const std::vector<at::Tag>& tags = {}) & {
c10::FunctionSchema s = schema(std::forward<Schema>(raw_schema));
return _def(std::move(s), nullptr, tags);
}
/// Define an operator for a schema and then register an implementation for
/// it. This is typically what you would use if you aren't planning
/// on making use of the dispatcher to structure your operator
/// implementation. It's roughly equivalent to calling def() and
/// then impl(), but if you omit the schema of the operator, we will
/// infer it from the type of your C++ function. All template
/// arguments are inferred.
///
/// \param raw_name_or_schema The schema of the operator to be
/// defined, or just the name of the operator if the schema is to be
/// inferred from `raw_f`. Typically a `const char*` literal.
/// \param raw_f The C++ function that implements this operator.
/// Any valid constructor of torch::CppFunction is accepted here;
/// typically you provide a function pointer or lambda.
///
/// ```
/// // Example:
/// TORCH_LIBRARY(myops, m) {
/// m.def("add", add_fn);
/// }
/// ```
template <typename NameOrSchema, typename Func>
Library& def(NameOrSchema&& raw_name_or_schema, Func&& raw_f) & {
CppFunction f(std::forward<Func>(raw_f));
auto name_or_schema = detail::constructSchemaOrName(
std::forward<NameOrSchema>(raw_name_or_schema));
return _def(std::move(name_or_schema), std::move(f));
}
/// Register an implementation for an operator. You may register multiple
/// implementations for a single operator at different dispatch keys
/// (see torch::dispatch()). Implementations must have a corresponding
/// declaration (from def()), otherwise they are invalid. If you plan
/// to register multiple implementations, DO NOT provide a function
/// implementation when you def() the operator.
///
/// \param name The name of the operator to implement. Do NOT provide
/// schema here.
/// \param raw_f The C++ function that implements this operator. Any
/// valid constructor of torch::CppFunction is accepted here;
/// typically you provide a function pointer or lambda.
///
/// ```
/// // Example:
/// TORCH_LIBRARY_IMPL(myops, CUDA, m) {
/// m.impl("add", add_cuda);
/// }
/// ```
template <typename Name, typename Func>
Library& impl(Name name, Func&& raw_f) & {
// TODO: need to raise an error when you impl a function that has a
// catch all def
#if defined C10_MOBILE
CppFunction f(std::forward<Func>(raw_f), NoInferSchemaTag());
#else
CppFunction f(std::forward<Func>(raw_f));
#endif
return _impl(name, std::move(f));
}
#if defined C10_MOBILE
// Note: This overload is needed only for C10_MOBILE, since the automatically
// defined copy constructor for the CppFunction doesn't have the additional
// NoInferSchemaTag argument. We define the overload for the impl() function
// to accept a CppFunction&& argument. The already constructed CppFunction
// object may or may not have the inferred schema, but it doesn't matter
// for our purposes since if it already has the inferred schema, then we
// might as well just pass it through directly.
//
template <typename Name>
Library& impl(Name name, CppFunction&& raw_f) & {
// TODO: need to raise an error when you impl a function that has a
// catch all def
CppFunction f(std::forward<CppFunction>(raw_f));
return _impl(name, std::move(f));
}
#endif
/// \private
///
/// Convenience overload for directly specifying the dispatch key when
/// impl(). You probably don't need this; instead, prefer specifying
/// the dispatch key for the entire block in TORCH_LIBRARY_IMPL()
template <typename Name, typename Dispatch, typename Func>
Library& impl(Name name, Dispatch&& key, Func&& raw_f) & {
return impl(
name, dispatch(std::forward<Dispatch>(key), std::forward<Func>(raw_f)));
}
template <typename Name, typename Func>
Library& impl_UNBOXED(Name /*name*/, Func* /*raw_f*/) & {
static_assert(
c10::guts::false_t<Func>(),
".impl_UNBOXED(...) was removed. Please use .impl(...) instead.");
return *this;
}
// These overloads cover cases when a SelectiveStr (see Note [Selective
// build]) has been disabled at compile time. In that case, don't generate
// any code referencing the passed in functions at all.
Library& def(detail::SelectiveStr<false>) & {
return *this;
}
Library& def(detail::SelectiveStr<true> raw_schema) & {
return def(raw_schema.operator const char*());
}
template <typename Func>
Library& def(detail::SelectiveStr<false>, Func&& /*raw_f*/) & {
return *this;
}
template <typename Func>
Library& def(detail::SelectiveStr<true> raw_name_or_schema, Func&& raw_f) & {
return def(
raw_name_or_schema.operator const char*(), std::forward<Func>(raw_f));
}
template <typename Func>
Library& impl(detail::SelectiveStr<false>, Func&& /*raw_f*/) & {
return *this;
}
template <typename Dispatch, typename Func>
Library& impl(detail::SelectiveStr<false>, Dispatch&& /*key*/, Func&& /*raw_f*/) & {
return *this;
}
template <typename Func>
Library& impl_UNBOXED(detail::SelectiveStr<false> /*name*/, Func* /*raw_f*/) & {
static_assert(
c10::guts::false_t<Func>(),
".impl_UNBOXED(...) was removed. Please use .impl(...) instead.");
return *this;
}
template <typename Func>
Library& impl(detail::SelectiveStr<true> name, Func&& raw_f) & {
return impl(name.operator const char*(), std::forward<Func>(raw_f));
}
template <typename Dispatch, typename Func>
Library& impl(
detail::SelectiveStr<true> name,
Dispatch&& key,
Func&& raw_f) & {
return impl(
name.operator const char*(),
std::forward<Dispatch>(key),
std::forward<Func>(raw_f));
}
template <typename Func>
Library& impl_UNBOXED(detail::SelectiveStr<true> /*name*/, Func* /*raw_f*/) & {
static_assert(
c10::guts::false_t<Func>(),
".impl_UNBOXED(...) was removed. Please use .impl(...) instead.");
return *this;
}
/// Register a fallback implementation for all operators which will be used
/// if there is not a specific implementation for an operator available.
/// There MUST be a DispatchKey associated with a fallback; e.g.,
/// only call this from TORCH_LIBRARY_IMPL() with namespace `_`.
///
/// \param raw_f The function that implements the fallback. Unboxed
/// functions typically do not work as fallback functions, as
/// fallback functions must work for every operator (even though
/// they have varying type signatures). Typical arguments are
/// CppFunction::makeFallthrough() or
/// CppFunction::makeFromBoxedFunction()
///
/// ```
/// // Example:
///
/// TORCH_LIBRARY_IMPL(_, AutogradXLA, m) {
/// // If there is not a kernel explicitly registered
/// // for AutogradXLA, fallthrough to the next
/// // available kernel
/// m.fallback(torch::CppFunction::makeFallthrough());
/// }
///
/// // See aten/src/ATen/core/dispatch/backend_fallback_test.cpp
/// // for a full example of boxed fallback
/// ```
template <typename Func>
Library& fallback(Func&& raw_f) & {
CppFunction f((std::forward<Func>(raw_f)));
return _fallback(std::move(f));
}
template <class CurClass>
inline torch::class_<CurClass> class_(const std::string& className);
// These overloads enable the use of selective build on classes registered
// within a library. The API is the same as before with 1 minor change.
// Instead of m.class_<foo>("foo") you instead do
// m.class_<foo>(TORCH_SELECTIVE_CLASS("foo"))
template <class CurClass>
inline torch::class_<CurClass> class_(detail::SelectiveStr<true> className);
template <class CurClass>
inline detail::ClassNotSelected class_(detail::SelectiveStr<false> className);
private:
Kind kind_;
c10::optional<std::string> ns_;
c10::optional<c10::DispatchKey> dispatch_key_;
const char* file_;
uint32_t line_;
std::vector<c10::RegistrationHandleRAII> registrars_;
friend class detail::TorchLibraryInit;
// Non-user visible actual implementations of functions. These aren't
// public because we only implement & qualifier and not && qualifier
Library& _def(
c10::FunctionSchema&& schema,
c10::OperatorName* out_name = nullptr,
const std::vector<at::Tag>& tags = {}) &;
Library& _def(
c10::either<c10::OperatorName, c10::FunctionSchema>&&,
CppFunction&& f) &;
Library& _impl(const char* name, CppFunction&& f) &;
Library& _fallback(CppFunction&& f) &;
};
namespace detail {
class TorchLibraryInit final {
private:
using InitFn = void(Library&);
Library lib_;
public:
TorchLibraryInit(
Library::Kind kind,
InitFn* fn,
const char* ns,
c10::optional<c10::DispatchKey> k,
const char* file,
uint32_t line)
: lib_(kind, ns, k, file, line) {
fn(lib_);
}
};
} // namespace detail
} // namespace torch
// NB: The EXACT NAMING of the initializer functions (e.g.,
// TORCH_LIBRARY_init_aten) matters for the code analyzer;
// see the regexes at tools/code_analyzer/run_analyzer.sh
/// Macro for defining a function that will be run at static
/// initialization time to define a library of operators in the
/// namespace `ns` (must be a valid C++ identifier, no quotes).
/// Use this macro when you want to define a new set of custom operators
/// that do not already exist in PyTorch.
///
/// Example usage:
///
/// ```
/// TORCH_LIBRARY(myops, m) {
/// // m is a torch::Library; methods on it will define
/// // operators in the myops namespace
/// m.def("add", add_impl);
/// }
/// ```
///
/// The `m` argument is bound to a torch::Library that is used to
/// register operators. There may only be one TORCH_LIBRARY()
/// for any given namespace.
#define TORCH_LIBRARY(ns, m) \
static void TORCH_LIBRARY_init_##ns(torch::Library&); \
static const torch::detail::TorchLibraryInit TORCH_LIBRARY_static_init_##ns( \
torch::Library::DEF, \
&TORCH_LIBRARY_init_##ns, \
#ns, \
c10::nullopt, \
__FILE__, \
__LINE__); \
void TORCH_LIBRARY_init_##ns(torch::Library& m)
/// \private
///
/// This macro is a version of TORCH_LIBRARY() that doesn't enforce that there
/// is only one library (it is a "fragment"). This is used inside the
/// PerOpRegistration.cpp file, as well as in places where all op registrations
/// within the same namespace cannot be easily put into one macro block
/// (this is mostly the case for custom ops in fbcode that were ported from
/// the old API)
#define TORCH_LIBRARY_FRAGMENT(ns, m) _TORCH_LIBRARY_FRAGMENT(ns, m, C10_UID)
/// \private
///
/// The above macro requires an extra unique identifier (uid) to prevent
/// variable name collisions This can happen if TORCH_LIBRARY_FRAGMENT is called
/// multiple times with the same namespace in the same translation unit. Note
/// that the TORCH_LIBRARY variant doesn't run into this problem, because it
/// enforces that it can only be called once for a given namespace.
#define _TORCH_LIBRARY_FRAGMENT(ns, m, uid) \
static void C10_CONCATENATE( \
TORCH_LIBRARY_FRAGMENT_init_##ns##_, uid)(torch::Library&); \
static const torch::detail::TorchLibraryInit C10_CONCATENATE( \
TORCH_LIBRARY_FRAGMENT_static_init_##ns##_, uid)( \
torch::Library::FRAGMENT, \
&C10_CONCATENATE(TORCH_LIBRARY_FRAGMENT_init_##ns##_, uid), \
#ns, \
c10::nullopt, \
__FILE__, \
__LINE__); \
void C10_CONCATENATE( \
TORCH_LIBRARY_FRAGMENT_init_##ns##_, uid)(torch::Library & m)
/// Macro for defining a function that will be run at static
/// initialization time to define operator overrides for dispatch key
/// `k` (must be an unqualified enum member of c10::DispatchKey) in
/// namespace `ns` (must be a valid C++ identifer, no quotes). Use this
/// macro when you want to implement a preexisting set of custom
/// operators on a new dispatch key (e.g., you want to provide CUDA
/// implementations of already existing operators). One common usage
/// pattern is to use TORCH_LIBRARY() to define schema for all new
/// operators you want to define, and then use several
/// TORCH_LIBRARY_IMPL() blocks to provide implementations of the
/// operator for CPU, CUDA and Autograd.
///
/// In some cases, you need to define something that applies to all namespaces,
/// not just one namespace (usually a fallback). In that case, use the reserved
/// namespace _, e.g.,
///
/// ```
/// TORCH_LIBRARY_IMPL(_, XLA, m) {
/// m.fallback(xla_fallback);
/// }
/// ```
///
/// Example usage:
///
/// ```
/// TORCH_LIBRARY_IMPL(myops, CPU, m) {
/// // m is a torch::Library; methods on it will define
/// // CPU implementations of operators in the myops namespace.
/// // It is NOT valid to call torch::Library::def()
/// // in this context.
/// m.impl("add", add_cpu_impl);
/// }
/// ```
///
/// If ``add_cpu_impl`` is an overloaded function, use a
/// ``static_cast`` to specify which overload you want
/// (by providing the full type).
///
// NB: if the dispatch key is not whitelisted, we simply omit the Library
// call entirely
#define TORCH_LIBRARY_IMPL(ns, k, m) _TORCH_LIBRARY_IMPL(ns, k, m, C10_UID)
/// \private
///
/// The above macro requires an extra unique identifier (uid) to prevent
/// variable name collisions. This can happen if TORCH_LIBRARY_IMPL is called
/// multiple times with the same namespace and dispatch key in the same
/// translation unit.
#define _TORCH_LIBRARY_IMPL(ns, k, m, uid) \
static void C10_CONCATENATE( \
TORCH_LIBRARY_IMPL_init_##ns##_##k##_, uid)(torch::Library&); \
static const torch::detail::TorchLibraryInit C10_CONCATENATE( \
TORCH_LIBRARY_IMPL_static_init_##ns##_##k##_, uid)( \
torch::Library::IMPL, \
c10::guts::if_constexpr<c10::impl::dispatch_key_allowlist_check( \
c10::DispatchKey::k)>( \
[]() { \
return &C10_CONCATENATE( \
TORCH_LIBRARY_IMPL_init_##ns##_##k##_, uid); \
}, \
[]() { return [](torch::Library&) -> void {}; }), \
#ns, \
c10::make_optional(c10::DispatchKey::k), \
__FILE__, \
__LINE__); \
void C10_CONCATENATE( \
TORCH_LIBRARY_IMPL_init_##ns##_##k##_, uid)(torch::Library & m)
// These are variants of the macros above which are to be used for testing (they
// don't setup the static initializer, so you can control the visibility of
// the allocated library yourself).
//
// DO NOT use these in production code, they are NOT understood by the
// code analyzer and will be incorrectly analyzed in those situations.
/// \private
#define MAKE_TORCH_LIBRARY(ns) \
torch::Library(torch::Library::DEF, #ns, c10::nullopt, __FILE__, __LINE__)
/// \private
#define MAKE_TORCH_LIBRARY_IMPL(ns, k) \
torch::Library( \
torch::Library::IMPL, \
#ns, \
c10::make_optional(c10::DispatchKey::k), \
__FILE__, \
__LINE__)
// Make the custom class API visible, so it is available from
// torch::Library.
#include <torch/custom_class.h>
|