1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
# Copyright (c) Meta Platforms, Inc. and affiliates
from functools import partial
import torch
from .binary import (
_apply_native_binary,
NATIVE_BINARY_FNS,
NATIVE_INPLACE_BINARY_FNS,
)
from .core import is_masked_tensor, MaskedTensor, _get_data, _masks_match, _maybe_get_mask
from .passthrough import (
_apply_pass_through_fn,
PASSTHROUGH_FNS
)
from .reductions import (
_apply_reduction,
NATIVE_REDUCE_FNS,
TORCH_REDUCE_FNS,
TENSOR_REDUCE_FNS,
)
from .unary import (
_apply_native_unary,
NATIVE_UNARY_FNS,
NATIVE_INPLACE_UNARY_FNS,
)
__all__ = [] # type: ignore[var-annotated]
def _check_args_kwargs_length(args, kwargs, error_prefix, len_args=None, len_kwargs=None):
if len_args is not None and len_args != len(args):
raise ValueError(f"{error_prefix}: len(args) must be {len_args} but got {len(args)}")
if len_kwargs is not None and len_kwargs != len(kwargs):
raise ValueError(f"{error_prefix}: len(kwargs) must be {len_kwargs} but got {len(kwargs)}")
class _MaskedContiguous(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
if not is_masked_tensor(input):
raise ValueError("MaskedContiguous forward: input must be a MaskedTensor.")
if input.is_contiguous():
return input
data = input.get_data()
mask = input.get_mask()
return MaskedTensor(data.contiguous(), mask.contiguous())
@staticmethod
def backward(ctx, grad_output):
return grad_output
class _MaskedToDense(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
if not is_masked_tensor(input):
raise ValueError("MaskedToDense forward: input must be a MaskedTensor.")
if input.layout == torch.strided:
return input
ctx.layout = input.layout
data = input.get_data()
mask = input.get_mask()
return MaskedTensor(data.to_dense(), mask.to_dense())
@staticmethod
def backward(ctx, grad_output):
layout = ctx.layout
if layout == torch.sparse_coo:
return grad_output.to_sparse_coo()
elif layout == torch.sparse_csr:
return grad_output.to_sparse_csr()
elif layout == torch.strided:
return grad_output.to_dense()
raise ValueError("to_dense: Unsupported input layout: ", layout)
class _MaskedToSparse(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
if not is_masked_tensor(input):
raise ValueError("MaskedToSparse forward: input must be a MaskedTensor.")
# Following the convention from sparse tensors that to_sparse always means that we convert to sparse_coo
if input.layout == torch.sparse_coo:
return input
data = input.get_data()
mask = input.get_mask()
sparse_mask = mask.to_sparse_coo().coalesce()
sparse_data = data.sparse_mask(sparse_mask)
return MaskedTensor(sparse_data, sparse_mask)
@staticmethod
def backward(ctx, grad_output):
return grad_output.to_dense()
class _MaskedToSparseCsr(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
if not is_masked_tensor(input):
raise ValueError("MaskedToSparseCsr forward: input must be a MaskedTensor.")
if input._masked_data.ndim != 2:
raise ValueError(f"Only 2D tensors can be converted to the SparseCsr layout but got shape: {input._masked_data.size()}")
if input.layout == torch.sparse_csr:
return input
data = input.get_data()
mask = input.get_mask()
sparse_mask = mask.to_sparse_csr()
sparse_data = data.sparse_mask(sparse_mask)
return MaskedTensor(sparse_data, sparse_mask)
@staticmethod
def backward(ctx, grad_output):
return grad_output.to_dense()
class _MaskedWhere(torch.autograd.Function):
@staticmethod
def forward(ctx, cond, self, other):
ctx.mark_non_differentiable(cond)
ctx.save_for_backward(cond)
return torch.ops.aten.where(cond, self, other)
@staticmethod
def backward(ctx, grad_output):
(cond,) = ctx.saved_tensors
def masked_out_like(mt):
return MaskedTensor(mt.get_data(), torch.zeros_like(mt.get_mask()).bool())
return (
None,
torch.ops.aten.where(cond, grad_output, masked_out_like(grad_output)),
torch.ops.aten.where(cond, masked_out_like(grad_output), grad_output),
)
_MASKEDTENSOR_FUNCTION_TABLE = {}
_function_fn_apply_map = {
(tuple(NATIVE_REDUCE_FNS), tuple(TORCH_REDUCE_FNS), tuple(TENSOR_REDUCE_FNS)): _apply_reduction,
}
for fn_map_list, apply_fn in _function_fn_apply_map.items():
for fn_map in fn_map_list:
for fn in fn_map:
_MASKEDTENSOR_FUNCTION_TABLE[fn] = partial(apply_fn, fn)
def register_function_func(ops):
"""
Used for registering a new __torch_function__ function to MaskedTensor
Called via _MASKEDTENSOR_FUNCTION_TABLE[func](*args, **kwargs)
The code to register a new function looks like:
@register_function_func(list_of_ops)
def foo(func, *args, **kwargs):
<implementation>
"""
def wrapper(func):
for op in ops:
_MASKEDTENSOR_FUNCTION_TABLE[op] = partial(func, op)
return wrapper
@register_function_func(NATIVE_REDUCE_FNS + TORCH_REDUCE_FNS + TENSOR_REDUCE_FNS)
def _general_function_reductions(func, *args, **kwargs):
return _apply_reduction(func, *args, **kwargs)
@register_function_func([torch.Tensor.where, torch.where])
def _function_where(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, "__torch_function__, torch.where", len_args=3, len_kwargs=0)
return _MaskedWhere.apply(*args)
@register_function_func([torch.Tensor.contiguous])
def _function_contiguous(func, *args, **kwargs):
return _MaskedContiguous.apply(args[0])
@register_function_func([torch.Tensor.to_dense])
def _function_to_dense(func, *args, **kwargs):
return _MaskedToDense.apply(args[0])
@register_function_func([torch.Tensor.to_sparse])
def _function_to_sparse(func, *args, **kwargs):
return _MaskedToSparse.apply(args[0])
@register_function_func([torch.Tensor.to_sparse_csr])
def _function_to_sparse_csr(func, *args, **kwargs):
return _MaskedToSparseCsr.apply(args[0])
_MASKEDTENSOR_DISPATCH_TABLE = {}
def register_dispatch_func(aten_ops):
"""
Used for registering a new __torch_dispatch__ function to MaskedTensor
Called via _MASKEDTENSOR_DISPATCH_TABLE[func](*args, **kwargs)
The code to register a new function looks like:
@register_dispatch_func(list_of_ops)
def foo(func, *args, **kwargs):
<implementation>
"""
def wrapper(func):
for aten_op in aten_ops:
_MASKEDTENSOR_DISPATCH_TABLE[aten_op] = partial(func, aten_op)
return wrapper
@register_dispatch_func(NATIVE_REDUCE_FNS + TORCH_REDUCE_FNS + TENSOR_REDUCE_FNS)
def _general_reduction(func, *args, **kwargs):
return _apply_reduction(func, *args, **kwargs)
@register_dispatch_func(PASSTHROUGH_FNS)
def _general_passthrough(func, *args, **kwargs):
return _apply_pass_through_fn(func, *args, **kwargs)
@register_dispatch_func(NATIVE_UNARY_FNS + NATIVE_INPLACE_UNARY_FNS)
def _general_unary(func, *args, **kwargs):
return _apply_native_unary(func, *args, **kwargs)
@register_dispatch_func(NATIVE_BINARY_FNS + NATIVE_INPLACE_BINARY_FNS)
def _general_binary(func, *args, **kwargs):
return _apply_native_binary(func, *args, **kwargs)
@register_dispatch_func([torch.ops.aten.stride])
def stride(func, *args, **kwargs):
return None
@register_dispatch_func([torch.ops.aten.sym_stride])
def sym_stride(func, *args, **kwargs):
return None
@register_dispatch_func([torch.ops.prim.layout])
def layout(func, *args, **kwargs):
return _get_data(args[0]).layout
@register_dispatch_func([torch.ops.aten.is_contiguous])
def is_contiguous(func, *args, **kwargs):
data = _get_data(args[0])
if data.is_sparse:
raise ValueError(
"MaskedTensors with sparse data do not have is_contiguous"
)
return func(data, *args[1:], **kwargs)
@register_dispatch_func([torch.ops.aten.is_strides_like_format])
def is_strides_like_format(func, *args, **kwargs):
data = _get_data(args[0])
if data.is_sparse:
raise ValueError(
"MaskedTensors with sparse data do not have is_strides_like_format"
)
return func(data, *args[1:], **kwargs)
@register_dispatch_func([torch.ops.aten.is_non_overlapping_and_dense])
def is_non_overlapping_and_dense(func, *args, **kwargs):
data = _get_data(args[0])
if data.is_sparse:
raise ValueError(
"MaskedTensors with sparse data do not have is_non_overlapping_and_dense"
)
return func(data, *args[1:], **kwargs)
@register_dispatch_func([torch.ops.aten.contiguous])
def contiguous(func, *args, **kwargs):
if _get_data(args[0]).is_sparse:
raise ValueError(
"MaskedTensors with sparse data do not have contiguous"
)
return _MaskedContiguous.apply(args[0])
@register_dispatch_func([torch.ops.aten.new_empty_strided])
def new_empty_strided(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=3)
data = _get_data(args[0])
mask = _maybe_get_mask(args[0])
if tuple(args[1]) != tuple(data.size()):
raise ValueError(f"__torch_dispatch__, {func}: args[1] expected to be the same as data.size()")
if tuple(args[2]) != tuple(data.stride()):
raise ValueError(f"__torch_dispatch__, {func}: args[2] expected to be the same as data.stride()")
return MaskedTensor(func(data, args[1], args[2], **kwargs), mask)
@register_dispatch_func([torch.ops.aten._local_scalar_dense])
def _local_scalar_dense(func, *args, **kwargs):
if not _maybe_get_mask(args[0]):
raise ValueError(f"__torch_dispatch__, {func}: expected a mask tensor")
return torch.ops.aten._local_scalar_dense(_get_data(args[0]))
@register_dispatch_func([torch.ops.aten.detach, torch.ops.aten.clone])
def _apply_fn_on_data(func, *args, **kwargs):
return MaskedTensor(func(_get_data(args[0])), _maybe_get_mask(args[0]))
@register_dispatch_func([torch.ops.aten._to_copy])
def _to_copy(func, *args, **kwargs):
new_data = func(_get_data(args[0]), *args[1:], **kwargs)
return MaskedTensor(new_data, _maybe_get_mask(args[0]))
@register_dispatch_func([torch.ops.aten._softmax])
def _softmax(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=3, len_kwargs=0)
data = _get_data(args[0])
mask = _maybe_get_mask(args[0])
result_data = torch.ops.aten._masked_softmax(data, ~mask, args[1], 2)
return MaskedTensor(result_data, mask)
@register_dispatch_func([torch.ops.aten.ones_like])
def ones_like(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1)
result_data = func(_get_data(args[0]), **kwargs)
return MaskedTensor(result_data, _maybe_get_mask(args[0]))
@register_dispatch_func([torch.ops.aten._softmax_backward_data])
def _softmax_backward_data(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=4)
grad, output, dim, input_dtype = args
if is_masked_tensor(grad) and is_masked_tensor(output):
if not _masks_match(grad, output):
raise ValueError("__torch_dispatch__, {func}: expected the masks of grad and output to match")
grad_data = _get_data(grad)
new_grad_data = torch.ops.aten._masked_softmax_backward(
grad_data,
_get_data(output),
~_maybe_get_mask(grad),
dim % grad_data.ndim,
)
res = MaskedTensor(new_grad_data, _maybe_get_mask(grad))
return res
else:
raise ValueError(f"__torch_dispatch__, {func}: grad and output must both be MaskedTensors")
@register_dispatch_func([torch.ops.aten.copy_])
def copy_(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=2)
if not _masks_match(_maybe_get_mask(args[0]), _maybe_get_mask(args[1])):
raise ValueError("args[0] mask and args[1] mask must match but do not")
func(_get_data(args[0]), _get_data(args[1]))
return args[0]
@register_dispatch_func([torch.ops.aten.where])
def where(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=3, len_kwargs=0)
if not torch.is_tensor(args[0]):
raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
mx = args[1]
my = args[2]
if not is_masked_tensor(mx):
mx = MaskedTensor(mx, torch.ones_like(mx, dtype=torch.bool))
if not is_masked_tensor(my):
my = MaskedTensor(my, torch.ones_like(my, dtype=torch.bool))
new_data = func(args[0], mx.get_data(), my.get_data())
new_mask = func(args[0], mx.get_mask(), my.get_mask())
return MaskedTensor(new_data, new_mask)
@register_dispatch_func([torch.ops.aten.to_sparse])
def to_sparse(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
if not torch.is_tensor(args[0]):
raise TypeError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
mt = args[0]
if not is_masked_tensor(mt):
mt = MaskedTensor(mt, torch.ones_like(mt, dtype=torch.bool))
if mt.is_sparse_coo():
return mt
new_mask = func(_maybe_get_mask(args[0])).coalesce()
new_data = _get_data(args[0]).sparse_mask(new_mask)
return MaskedTensor(new_data, new_mask)
@register_dispatch_func([torch.ops.aten.to_sparse_csr])
def to_sparse_csr(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
if not torch.is_tensor(args[0]):
raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
mt = args[0]
if not is_masked_tensor(mt):
mt = MaskedTensor(mt, torch.ones_like(mt).bool())
if mt.is_sparse_csr():
return mt
new_mask = func(_maybe_get_mask(args[0]))
new_data = _get_data(args[0]).sparse_mask(new_mask)
return MaskedTensor(new_data, new_mask)
@register_dispatch_func([torch.ops.aten._to_dense])
def _to_dense(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
if not torch.is_tensor(args[0]):
raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
mt = args[0]
if not is_masked_tensor(mt):
mt = MaskedTensor(mt, torch.ones_like(mt).bool())
new_data = func(_get_data(args[0]))
new_mask = func(_maybe_get_mask(args[0]))
return MaskedTensor(new_data, new_mask)
@register_dispatch_func([torch.ops.aten._indices])
def _indices(func, *args, **kwargs):
# Assumes data is sparse
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
data = _get_data(args[0]).indices()
return MaskedTensor(data, torch.ones_like(data).bool())
@register_dispatch_func([torch.ops.aten._values])
def _values(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
data = _get_data(args[0]).values()
return MaskedTensor(data, torch.ones_like(data).bool())
@register_dispatch_func([torch.ops.aten._sparse_coo_tensor_with_dims_and_tensors])
def _sparse_coo_tensor_with_dims_and_tensors(func, *args, **kwargs):
new_args = list(args)
if is_masked_tensor(args[-1]):
new_args[-1] = args[-1].get_data()
if is_masked_tensor(args[-2]):
new_args[-2] = args[-2].get_data()
new_data = func(*new_args, **kwargs)
new_args[-1] = torch.ones_like(new_args[-1])
new_mask = func(*new_args, **kwargs).bool()
return MaskedTensor(new_data, new_mask)
@register_dispatch_func([torch.ops.aten.is_same_size])
def is_same_size(func, *args, **kwargs):
_check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=2)
return _get_data(args[0]).is_same_size(_get_data(args[1]))
|