File: _ops_refs.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (473 lines) | stat: -rw-r--r-- 16,419 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright (c) Meta Platforms, Inc. and affiliates

from functools import partial
import torch

from .binary import (
    _apply_native_binary,
    NATIVE_BINARY_FNS,
    NATIVE_INPLACE_BINARY_FNS,
)
from .core import is_masked_tensor, MaskedTensor, _get_data, _masks_match, _maybe_get_mask
from .passthrough import (
    _apply_pass_through_fn,
    PASSTHROUGH_FNS
)
from .reductions import (
    _apply_reduction,
    NATIVE_REDUCE_FNS,
    TORCH_REDUCE_FNS,
    TENSOR_REDUCE_FNS,
)
from .unary import (
    _apply_native_unary,
    NATIVE_UNARY_FNS,
    NATIVE_INPLACE_UNARY_FNS,
)


__all__ = []  # type: ignore[var-annotated]


def _check_args_kwargs_length(args, kwargs, error_prefix, len_args=None, len_kwargs=None):
    if len_args is not None and len_args != len(args):
        raise ValueError(f"{error_prefix}: len(args) must be {len_args} but got {len(args)}")
    if len_kwargs is not None and len_kwargs != len(kwargs):
        raise ValueError(f"{error_prefix}: len(kwargs) must be {len_kwargs} but got {len(kwargs)}")


class _MaskedContiguous(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        if not is_masked_tensor(input):
            raise ValueError("MaskedContiguous forward: input must be a MaskedTensor.")

        if input.is_contiguous():
            return input

        data = input.get_data()
        mask = input.get_mask()

        return MaskedTensor(data.contiguous(), mask.contiguous())

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output


class _MaskedToDense(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        if not is_masked_tensor(input):
            raise ValueError("MaskedToDense forward: input must be a MaskedTensor.")

        if input.layout == torch.strided:
            return input

        ctx.layout = input.layout
        data = input.get_data()
        mask = input.get_mask()

        return MaskedTensor(data.to_dense(), mask.to_dense())

    @staticmethod
    def backward(ctx, grad_output):
        layout = ctx.layout

        if layout == torch.sparse_coo:
            return grad_output.to_sparse_coo()
        elif layout == torch.sparse_csr:
            return grad_output.to_sparse_csr()
        elif layout == torch.strided:
            return grad_output.to_dense()
        raise ValueError("to_dense: Unsupported input layout: ", layout)


class _MaskedToSparse(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        if not is_masked_tensor(input):
            raise ValueError("MaskedToSparse forward: input must be a MaskedTensor.")

        # Following the convention from sparse tensors that to_sparse always means that we convert to sparse_coo
        if input.layout == torch.sparse_coo:
            return input

        data = input.get_data()
        mask = input.get_mask()
        sparse_mask = mask.to_sparse_coo().coalesce()
        sparse_data = data.sparse_mask(sparse_mask)

        return MaskedTensor(sparse_data, sparse_mask)

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output.to_dense()


class _MaskedToSparseCsr(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        if not is_masked_tensor(input):
            raise ValueError("MaskedToSparseCsr forward: input must be a MaskedTensor.")

        if input._masked_data.ndim != 2:
            raise ValueError(f"Only 2D tensors can be converted to the SparseCsr layout but got shape: {input._masked_data.size()}")

        if input.layout == torch.sparse_csr:
            return input

        data = input.get_data()
        mask = input.get_mask()
        sparse_mask = mask.to_sparse_csr()
        sparse_data = data.sparse_mask(sparse_mask)

        return MaskedTensor(sparse_data, sparse_mask)

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output.to_dense()


class _MaskedWhere(torch.autograd.Function):
    @staticmethod
    def forward(ctx, cond, self, other):
        ctx.mark_non_differentiable(cond)
        ctx.save_for_backward(cond)
        return torch.ops.aten.where(cond, self, other)

    @staticmethod
    def backward(ctx, grad_output):
        (cond,) = ctx.saved_tensors

        def masked_out_like(mt):
            return MaskedTensor(mt.get_data(), torch.zeros_like(mt.get_mask()).bool())

        return (
            None,
            torch.ops.aten.where(cond, grad_output, masked_out_like(grad_output)),
            torch.ops.aten.where(cond, masked_out_like(grad_output), grad_output),
        )


_MASKEDTENSOR_FUNCTION_TABLE = {}

_function_fn_apply_map = {
    (tuple(NATIVE_REDUCE_FNS), tuple(TORCH_REDUCE_FNS), tuple(TENSOR_REDUCE_FNS)): _apply_reduction,
}

for fn_map_list, apply_fn in _function_fn_apply_map.items():
    for fn_map in fn_map_list:
        for fn in fn_map:
            _MASKEDTENSOR_FUNCTION_TABLE[fn] = partial(apply_fn, fn)


def register_function_func(ops):
    """
    Used for registering a new __torch_function__ function to MaskedTensor
    Called via _MASKEDTENSOR_FUNCTION_TABLE[func](*args, **kwargs)

    The code to register a new function looks like:

    @register_function_func(list_of_ops)
    def foo(func, *args, **kwargs):
        <implementation>
    """
    def wrapper(func):
        for op in ops:
            _MASKEDTENSOR_FUNCTION_TABLE[op] = partial(func, op)
    return wrapper


@register_function_func(NATIVE_REDUCE_FNS + TORCH_REDUCE_FNS + TENSOR_REDUCE_FNS)
def _general_function_reductions(func, *args, **kwargs):
    return _apply_reduction(func, *args, **kwargs)


@register_function_func([torch.Tensor.where, torch.where])
def _function_where(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, "__torch_function__, torch.where", len_args=3, len_kwargs=0)
    return _MaskedWhere.apply(*args)


@register_function_func([torch.Tensor.contiguous])
def _function_contiguous(func, *args, **kwargs):
    return _MaskedContiguous.apply(args[0])


@register_function_func([torch.Tensor.to_dense])
def _function_to_dense(func, *args, **kwargs):
    return _MaskedToDense.apply(args[0])


@register_function_func([torch.Tensor.to_sparse])
def _function_to_sparse(func, *args, **kwargs):
    return _MaskedToSparse.apply(args[0])


@register_function_func([torch.Tensor.to_sparse_csr])
def _function_to_sparse_csr(func, *args, **kwargs):
    return _MaskedToSparseCsr.apply(args[0])


_MASKEDTENSOR_DISPATCH_TABLE = {}

def register_dispatch_func(aten_ops):
    """
    Used for registering a new __torch_dispatch__ function to MaskedTensor
    Called via _MASKEDTENSOR_DISPATCH_TABLE[func](*args, **kwargs)

    The code to register a new function looks like:

    @register_dispatch_func(list_of_ops)
    def foo(func, *args, **kwargs):
        <implementation>
    """
    def wrapper(func):
        for aten_op in aten_ops:
            _MASKEDTENSOR_DISPATCH_TABLE[aten_op] = partial(func, aten_op)
    return wrapper


@register_dispatch_func(NATIVE_REDUCE_FNS + TORCH_REDUCE_FNS + TENSOR_REDUCE_FNS)
def _general_reduction(func, *args, **kwargs):
    return _apply_reduction(func, *args, **kwargs)


@register_dispatch_func(PASSTHROUGH_FNS)
def _general_passthrough(func, *args, **kwargs):
    return _apply_pass_through_fn(func, *args, **kwargs)


@register_dispatch_func(NATIVE_UNARY_FNS + NATIVE_INPLACE_UNARY_FNS)
def _general_unary(func, *args, **kwargs):
    return _apply_native_unary(func, *args, **kwargs)


@register_dispatch_func(NATIVE_BINARY_FNS + NATIVE_INPLACE_BINARY_FNS)
def _general_binary(func, *args, **kwargs):
    return _apply_native_binary(func, *args, **kwargs)


@register_dispatch_func([torch.ops.aten.stride])
def stride(func, *args, **kwargs):
    return None


@register_dispatch_func([torch.ops.aten.sym_stride])
def sym_stride(func, *args, **kwargs):
    return None


@register_dispatch_func([torch.ops.prim.layout])
def layout(func, *args, **kwargs):
    return _get_data(args[0]).layout


@register_dispatch_func([torch.ops.aten.is_contiguous])
def is_contiguous(func, *args, **kwargs):
    data = _get_data(args[0])
    if data.is_sparse:
        raise ValueError(
            "MaskedTensors with sparse data do not have is_contiguous"
        )
    return func(data, *args[1:], **kwargs)


@register_dispatch_func([torch.ops.aten.is_strides_like_format])
def is_strides_like_format(func, *args, **kwargs):
    data = _get_data(args[0])
    if data.is_sparse:
        raise ValueError(
            "MaskedTensors with sparse data do not have is_strides_like_format"
        )
    return func(data, *args[1:], **kwargs)


@register_dispatch_func([torch.ops.aten.is_non_overlapping_and_dense])
def is_non_overlapping_and_dense(func, *args, **kwargs):
    data = _get_data(args[0])
    if data.is_sparse:
        raise ValueError(
            "MaskedTensors with sparse data do not have is_non_overlapping_and_dense"
        )
    return func(data, *args[1:], **kwargs)


@register_dispatch_func([torch.ops.aten.contiguous])
def contiguous(func, *args, **kwargs):
    if _get_data(args[0]).is_sparse:
        raise ValueError(
            "MaskedTensors with sparse data do not have contiguous"
        )
    return _MaskedContiguous.apply(args[0])


@register_dispatch_func([torch.ops.aten.new_empty_strided])
def new_empty_strided(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=3)
    data = _get_data(args[0])
    mask = _maybe_get_mask(args[0])
    if tuple(args[1]) != tuple(data.size()):
        raise ValueError(f"__torch_dispatch__, {func}: args[1] expected to be the same as data.size()")
    if tuple(args[2]) != tuple(data.stride()):
        raise ValueError(f"__torch_dispatch__, {func}: args[2] expected to be the same as data.stride()")
    return MaskedTensor(func(data, args[1], args[2], **kwargs), mask)


@register_dispatch_func([torch.ops.aten._local_scalar_dense])
def _local_scalar_dense(func, *args, **kwargs):
    if not _maybe_get_mask(args[0]):
        raise ValueError(f"__torch_dispatch__, {func}: expected a mask tensor")
    return torch.ops.aten._local_scalar_dense(_get_data(args[0]))


@register_dispatch_func([torch.ops.aten.detach, torch.ops.aten.clone])
def _apply_fn_on_data(func, *args, **kwargs):
    return MaskedTensor(func(_get_data(args[0])), _maybe_get_mask(args[0]))


@register_dispatch_func([torch.ops.aten._to_copy])
def _to_copy(func, *args, **kwargs):
    new_data = func(_get_data(args[0]), *args[1:], **kwargs)
    return MaskedTensor(new_data, _maybe_get_mask(args[0]))


@register_dispatch_func([torch.ops.aten._softmax])
def _softmax(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=3, len_kwargs=0)
    data = _get_data(args[0])
    mask = _maybe_get_mask(args[0])
    result_data = torch.ops.aten._masked_softmax(data, ~mask, args[1], 2)
    return MaskedTensor(result_data, mask)


@register_dispatch_func([torch.ops.aten.ones_like])
def ones_like(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1)
    result_data = func(_get_data(args[0]), **kwargs)
    return MaskedTensor(result_data, _maybe_get_mask(args[0]))


@register_dispatch_func([torch.ops.aten._softmax_backward_data])
def _softmax_backward_data(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=4)
    grad, output, dim, input_dtype = args
    if is_masked_tensor(grad) and is_masked_tensor(output):
        if not _masks_match(grad, output):
            raise ValueError("__torch_dispatch__, {func}: expected the masks of grad and output to match")
        grad_data = _get_data(grad)
        new_grad_data = torch.ops.aten._masked_softmax_backward(
            grad_data,
            _get_data(output),
            ~_maybe_get_mask(grad),
            dim % grad_data.ndim,
        )
        res = MaskedTensor(new_grad_data, _maybe_get_mask(grad))
        return res
    else:
        raise ValueError(f"__torch_dispatch__, {func}: grad and output must both be MaskedTensors")


@register_dispatch_func([torch.ops.aten.copy_])
def copy_(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=2)
    if not _masks_match(_maybe_get_mask(args[0]), _maybe_get_mask(args[1])):
        raise ValueError("args[0] mask and args[1] mask must match but do not")
    func(_get_data(args[0]), _get_data(args[1]))
    return args[0]


@register_dispatch_func([torch.ops.aten.where])
def where(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=3, len_kwargs=0)
    if not torch.is_tensor(args[0]):
        raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
    mx = args[1]
    my = args[2]
    if not is_masked_tensor(mx):
        mx = MaskedTensor(mx, torch.ones_like(mx, dtype=torch.bool))
    if not is_masked_tensor(my):
        my = MaskedTensor(my, torch.ones_like(my, dtype=torch.bool))
    new_data = func(args[0], mx.get_data(), my.get_data())
    new_mask = func(args[0], mx.get_mask(), my.get_mask())
    return MaskedTensor(new_data, new_mask)


@register_dispatch_func([torch.ops.aten.to_sparse])
def to_sparse(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
    if not torch.is_tensor(args[0]):
        raise TypeError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
    mt = args[0]
    if not is_masked_tensor(mt):
        mt = MaskedTensor(mt, torch.ones_like(mt, dtype=torch.bool))
    if mt.is_sparse_coo():
        return mt
    new_mask = func(_maybe_get_mask(args[0])).coalesce()
    new_data = _get_data(args[0]).sparse_mask(new_mask)
    return MaskedTensor(new_data, new_mask)


@register_dispatch_func([torch.ops.aten.to_sparse_csr])
def to_sparse_csr(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
    if not torch.is_tensor(args[0]):
        raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
    mt = args[0]
    if not is_masked_tensor(mt):
        mt = MaskedTensor(mt, torch.ones_like(mt).bool())
    if mt.is_sparse_csr():
        return mt
    new_mask = func(_maybe_get_mask(args[0]))
    new_data = _get_data(args[0]).sparse_mask(new_mask)
    return MaskedTensor(new_data, new_mask)


@register_dispatch_func([torch.ops.aten._to_dense])
def _to_dense(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
    if not torch.is_tensor(args[0]):
        raise ValueError("__torch_dispatch__, {func}: expected args[0] to be a tensor")
    mt = args[0]
    if not is_masked_tensor(mt):
        mt = MaskedTensor(mt, torch.ones_like(mt).bool())
    new_data = func(_get_data(args[0]))
    new_mask = func(_maybe_get_mask(args[0]))
    return MaskedTensor(new_data, new_mask)


@register_dispatch_func([torch.ops.aten._indices])
def _indices(func, *args, **kwargs):
    # Assumes data is sparse
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
    data = _get_data(args[0]).indices()
    return MaskedTensor(data, torch.ones_like(data).bool())


@register_dispatch_func([torch.ops.aten._values])
def _values(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=1, len_kwargs=0)
    data = _get_data(args[0]).values()
    return MaskedTensor(data, torch.ones_like(data).bool())


@register_dispatch_func([torch.ops.aten._sparse_coo_tensor_with_dims_and_tensors])
def _sparse_coo_tensor_with_dims_and_tensors(func, *args, **kwargs):
    new_args = list(args)
    if is_masked_tensor(args[-1]):
        new_args[-1] = args[-1].get_data()
    if is_masked_tensor(args[-2]):
        new_args[-2] = args[-2].get_data()

    new_data = func(*new_args, **kwargs)
    new_args[-1] = torch.ones_like(new_args[-1])
    new_mask = func(*new_args, **kwargs).bool()

    return MaskedTensor(new_data, new_mask)


@register_dispatch_func([torch.ops.aten.is_same_size])
def is_same_size(func, *args, **kwargs):
    _check_args_kwargs_length(args, kwargs, f"__torch_dispatch__, {func}", len_args=2)
    return _get_data(args[0]).is_same_size(_get_data(args[1]))