File: core.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (335 lines) | stat: -rw-r--r-- 12,378 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright (c) Meta Platforms, Inc. and affiliates

import warnings

import torch
from torch.overrides import get_default_nowrap_functions


__all__ = [
    "MaskedTensor",
    "is_masked_tensor",
]


def is_masked_tensor(a):
    r""" Returns True if the input is a MaskedTensor, else False

    Args:
        a: any input

    Examples:

        >>> # xdoctest: +SKIP
        >>> from torch.masked import MaskedTensor
        >>> data = torch.arange(6).reshape(2,3)
        >>> mask = torch.tensor([[True, False, False], [True, True, False]])
        >>> mt = MaskedTensor(data, mask)
        >>> is_masked_tensor(mt)
        True
    """
    return isinstance(a, MaskedTensor)


def _tensors_match(a, b, exact=True, rtol=1e-05, atol=1e-08):
    if is_masked_tensor(a) or is_masked_tensor(b):
        raise ValueError("Neither `a` nor `b` can be a MaskedTensor.")
    if a.layout != b.layout:
        raise ValueError(f"`a` and `b` must have the same layout. Got {a.layout} and {b.layout}")

    if a.dtype != b.dtype:
        b = b.type(a.dtype)
    if a.layout == b.layout == torch.sparse_coo:
        return _tensors_match(a.values(), b.values(), exact) and _tensors_match(
            a.indices(), b.indices(), exact
        )
    elif a.layout == b.layout == torch.sparse_csr:
        return (
            _tensors_match(a.crow_indices(), b.crow_indices(), exact)
            and _tensors_match(a.col_indices(), b.col_indices(), exact)
            and _tensors_match(a.values(), b.values(), exact)
        )
    if exact:
        return (a.dim() == b.dim()) and torch.eq(a, b).all().item()
    return (a.dim() == b.dim()) and torch.allclose(a, b, rtol=rtol, atol=atol)


def _masks_match(a, b):
    if is_masked_tensor(a) and is_masked_tensor(b):
        mask_a = a.get_mask()
        mask_b = b.get_mask()
        return _tensors_match(mask_a, mask_b, exact=True)
    return True


def _map_mt_args_kwargs(args, kwargs, map_fn):
    def _helper(a, map_fn):
        if is_masked_tensor(a):
            return map_fn(a)
        elif torch.is_tensor(a):
            return a
        elif isinstance(a, list):
            a_impl, _ = _map_mt_args_kwargs(a, {}, map_fn)
            return a_impl
        elif isinstance(a, tuple):
            a_impl, _ = _map_mt_args_kwargs(a, {}, map_fn)
            return tuple(a_impl)
        else:
            return a

    if kwargs is None:
        kwargs = {}
    impl_args = []
    for a in args:
        impl_args.append(_helper(a, map_fn))
    impl_kwargs = {}
    for k, v in kwargs.items():
        impl_kwargs[k] = _helper(a, map_fn)
    return impl_args, impl_kwargs


def _wrap_result(result_data, result_mask):
    if isinstance(result_data, list):
        return list(_wrap_result(r, m) for (r, m) in zip(result_data, result_mask))
    if isinstance(result_data, tuple):
        return tuple(_wrap_result(r, m) for (r, m) in zip(result_data, result_mask))
    if torch.is_tensor(result_data):
        return MaskedTensor(result_data, result_mask)
    # Expect result_data and result_mask to be Tensors only
    return NotImplemented


def _masked_tensor_str(data, mask, formatter):
    if data.layout in {torch.sparse_coo, torch.sparse_csr}:
        data = data.to_dense()
        mask = mask.to_dense()
    if data.dim() == 1:
        formatted_elements = [
            formatter.format(d.item()) if isinstance(d.item(), float) else str(d.item())
            for d in data
        ]
        max_len = max(
            map(lambda x: 8 if x[1] else len(x[0]), zip(formatted_elements, ~mask))
        )
        return (
            "["
            + ", ".join(
                [
                    "--".rjust(max_len) if m else e
                    for (e, m) in zip(formatted_elements, ~mask)
                ]
            )
            + "]"
        )
    sub_strings = [_masked_tensor_str(d, m, formatter) for (d, m) in zip(data, mask)]
    sub_strings = ["\n".join(["  " + si for si in s.split("\n")]) for s in sub_strings]
    return "[\n" + ",\n".join(sub_strings) + "\n]"


def _get_data(a):
    if is_masked_tensor(a):
        return a._masked_data
    return a


def _maybe_get_mask(a):
    if is_masked_tensor(a):
        return a.get_mask()
    return None


class MaskedTensor(torch.Tensor):
    @staticmethod
    def __new__(cls, data, mask, requires_grad=False):
        if is_masked_tensor(data) or not torch.is_tensor(data):
            raise TypeError("data must be a Tensor")
        if is_masked_tensor(mask) or not torch.is_tensor(mask):
            raise TypeError("mask must be a Tensor")
        # Use a Tensor that of the give size for the wrapper.
        kwargs = {}
        kwargs["device"] = data.device
        kwargs["dtype"] = data.dtype
        kwargs["layout"] = data.layout
        kwargs["requires_grad"] = requires_grad
        kwargs["dispatch_sizes_strides_policy"] = "strides"
        kwargs["dispatch_layout"] = True
        warnings.warn(("The PyTorch API of MaskedTensors is in prototype stage "
                       "and will change in the near future. Please open a Github issue "
                       "for features requests and see our documentation on the torch.masked "
                       "module for further information about the project."), UserWarning)
        if data.requires_grad:
            warnings.warn("It is not recommended to create a MaskedTensor with a tensor that requires_grad. "
                          "To avoid this, you can use data.clone().detach()", UserWarning)
        return torch.Tensor._make_wrapper_subclass(cls, data.size(), **kwargs)  # type: ignore[attr-defined]

    def _preprocess_data(self, data, mask):
        from .._ops import _sparse_coo_where, _sparse_csr_where

        if data.layout != mask.layout:
            raise TypeError("data and mask must have the same layout.")
        if data.layout == torch.sparse_coo:
            data = data.coalesce()
            mask = mask.coalesce()
            if data._nnz() != mask._nnz():
                data = _sparse_coo_where(mask, data, torch.tensor(0))
        elif data.layout == torch.sparse_csr:
            if data._nnz() != mask._nnz():
                data = _sparse_csr_where(mask, data, torch.tensor(0))

        # Have to pick awkward names to not conflict with existing fields such as data
        self._masked_data = data.clone()
        self._masked_mask = mask.clone()

    def _validate_members(self):
        data = self._masked_data
        mask = self.get_mask()
        if type(data) != type(mask):
            raise TypeError(f"data and mask must have the same type. Got {type(data)} and {type(mask)}")
        if data.layout not in {torch.strided, torch.sparse_coo, torch.sparse_csr}:
            raise TypeError(f"data layout of {data.layout} is not supported.")
        if data.layout == torch.sparse_coo:
            if not _tensors_match(data.indices(), mask.indices(), exact=True):
                raise ValueError("data and mask are both sparse COO tensors but do not have the same indices.")
        elif data.layout == torch.sparse_csr:
            if not _tensors_match(
                data.crow_indices(), mask.crow_indices(), exact=True
            ) or not _tensors_match(data.col_indices(), mask.col_indices(), exact=True):
                raise ValueError("data and mask are both sparse CSR tensors but do not share either crow or col indices.")
        if mask.dtype != torch.bool:
            raise TypeError("mask must have dtype bool.")
        if not (
            data.dtype == torch.float16
            or data.dtype == torch.float32
            or data.dtype == torch.float64
            or data.dtype == torch.bool
            or data.dtype == torch.int8
            or data.dtype == torch.int16
            or data.dtype == torch.int32
            or data.dtype == torch.int64
        ):
            raise TypeError(f"{data.dtype} is not supported in MaskedTensor.")
        if data.dim() != mask.dim():
            raise ValueError("data.dim() must equal mask.dim()")
        if data.size() != mask.size():
            raise ValueError("data.size() must equal mask.size()")

    def __init__(self, data, mask, requires_grad=False):
        self._preprocess_data(data, mask)
        self._validate_members()

    @staticmethod
    def _from_values(data, mask):
        """ Differentiable constructor for MaskedTensor """
        class Constructor(torch.autograd.Function):
            @staticmethod
            def forward(ctx, data, mask):
                return MaskedTensor(data, mask)

            @staticmethod
            def backward(ctx, grad_output):
                return grad_output, None

        result = Constructor.apply(data, mask)
        return result

    def _set_data_mask(self, data, mask):
        self._masked_data = data
        self._masked_mask = mask
        self._validate_members()

    def __repr__(self):
        formatter = "{0:8.4f}"
        if self.dim() == 0:
            scalar_data = self.get_data().item()
            data_formatted = (
                formatter.format(scalar_data)
                if isinstance(scalar_data, float)
                else str(scalar_data)
            )
            if not self.get_mask().item():
                data_formatted = "--"
            return (
                "MaskedTensor("
                + data_formatted
                + ", "
                + str(self.get_mask().item())
                + ")"
            )
        s = _masked_tensor_str(self.get_data(), self.get_mask(), formatter)
        s = "\n".join("  " + si for si in s.split("\n"))
        return "MaskedTensor(\n" + s + "\n)"

    # Seems like this needs to be defined before torch_dispatch to work
    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        kwargs = kwargs or {}

        from ._ops_refs import _MASKEDTENSOR_FUNCTION_TABLE
        if func in _MASKEDTENSOR_FUNCTION_TABLE:
            return _MASKEDTENSOR_FUNCTION_TABLE[func](*args, **kwargs)

        if not all(issubclass(cls, t) for t in types):
            return NotImplemented
        with torch._C.DisableTorchFunction():
            ret = func(*args, **kwargs)
            if func in get_default_nowrap_functions():
                return ret
            else:
                return torch._tensor._convert(ret, cls)

    @classmethod
    def unary(cls, fn, data, mask):
        return MaskedTensor(fn(data), mask)

    @classmethod
    def __torch_dispatch__(cls, func, types, args, kwargs):
        func = func.overloadpacket

        from ._ops_refs import _MASKEDTENSOR_DISPATCH_TABLE
        if func in _MASKEDTENSOR_DISPATCH_TABLE:
            return _MASKEDTENSOR_DISPATCH_TABLE[func](*args, **kwargs)

        msg = (
            f"{func.__name__} is not implemented in __torch_dispatch__ for MaskedTensor.\n"
            "If you would like this operator to be supported, please file an issue for a feature request at "
            "https://github.com/pytorch/maskedtensor/issues with a minimal reproducible code snippet.\n"
            "In the case that the semantics for the operator are not trivial, it would be appreciated "
            "to also include a proposal for the semantics."
        )
        warnings.warn(msg)
        return NotImplemented

    def __lt__(self, other):
        if is_masked_tensor(other):
            return MaskedTensor(self.get_data() < _get_data(other), self.get_mask())
        return MaskedTensor(self.get_data() < other, self.get_mask())

    def to_tensor(self, value):
        return self.get_data().masked_fill(~self.get_mask(), value)

    def get_data(self):
        class GetData(torch.autograd.Function):
            @staticmethod
            def forward(ctx, self):
                return self._masked_data

            @staticmethod
            def backward(ctx, grad_output):
                if is_masked_tensor(grad_output):
                    return grad_output
                return MaskedTensor(grad_output, self.get_mask())

        return GetData.apply(self)

    def get_mask(self):
        return self._masked_mask

    def is_sparse_coo(self):
        return self.layout == torch.sparse_coo

    def is_sparse_csr(self):
        return self.layout == torch.sparse_csr

    # Update later to support more sparse layouts
    def is_sparse(self):
        return self.is_sparse_coo() or self.is_sparse_csr()