File: conv_fused.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (828 lines) | stat: -rw-r--r-- 29,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
import math
import torch
import torch.nn as nn
import torch.ao.nn.intrinsic as nni
import torch.ao.nn.qat as nnqat
import torch.nn.functional as F
from torch.nn import init
from torch.nn.utils import fuse_conv_bn_weights
from torch.nn.modules.utils import _single, _pair, _triple
from torch.nn.parameter import Parameter
from typing import TypeVar

__all__ = ['ConvBn1d', 'ConvBnReLU1d', 'ConvReLU1d', 'ConvBn2d', 'ConvBnReLU2d', 'ConvReLU2d', 'ConvBn3d',
           'ConvBnReLU3d', 'ConvReLU3d', 'update_bn_stats', 'freeze_bn_stats']
_BN_CLASS_MAP = {
    1: nn.BatchNorm1d,
    2: nn.BatchNorm2d,
    3: nn.BatchNorm3d,
}


MOD = TypeVar('MOD', bound=nn.modules.conv._ConvNd)


class _ConvBnNd(nn.modules.conv._ConvNd, nni._FusedModule):

    _version = 2
    _FLOAT_MODULE = MOD

    def __init__(self,
                 # ConvNd args
                 in_channels, out_channels, kernel_size, stride,
                 padding, dilation, transposed, output_padding,
                 groups,
                 bias,
                 padding_mode,
                 # BatchNormNd args
                 # num_features: out_channels
                 eps=1e-05, momentum=0.1,
                 # affine: True
                 # track_running_stats: True
                 # Args for this module
                 freeze_bn=False,
                 qconfig=None,
                 dim=2):
        nn.modules.conv._ConvNd.__init__(self, in_channels, out_channels, kernel_size,
                                         stride, padding, dilation, transposed,
                                         output_padding, groups, False, padding_mode)
        assert qconfig, 'qconfig must be provided for QAT module'
        self.qconfig = qconfig
        self.freeze_bn = freeze_bn if self.training else True
        self.bn = _BN_CLASS_MAP[dim](out_channels, eps, momentum, True, True)
        self.weight_fake_quant = self.qconfig.weight()
        if bias:
            self.bias = Parameter(torch.empty(out_channels))
        else:
            self.register_parameter('bias', None)
        self.reset_bn_parameters()

        # this needs to be called after reset_bn_parameters,
        # as they modify the same state
        if self.training:
            if freeze_bn:
                self.freeze_bn_stats()
            else:
                self.update_bn_stats()
        else:
            self.freeze_bn_stats()

        self._enable_slow_path_for_better_numerical_stability = False

    def reset_running_stats(self):
        self.bn.reset_running_stats()

    def reset_bn_parameters(self):
        self.bn.reset_running_stats()
        init.uniform_(self.bn.weight)
        init.zeros_(self.bn.bias)
        # note: below is actully for conv, not BN
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound)

    def reset_parameters(self):
        super(_ConvBnNd, self).reset_parameters()

    def update_bn_stats(self):
        self.freeze_bn = False
        self.bn.training = True
        return self

    def freeze_bn_stats(self):
        self.freeze_bn = True
        self.bn.training = False
        return self

    def _forward(self, input):
        if self._enable_slow_path_for_better_numerical_stability:
            return self._forward_slow(input)
        return self._forward_approximate(input)

    def _forward_approximate(self, input):
        """Approximated method to fuse conv and bn. It requires only one forward pass.
        conv_orig = conv / scale_factor where scale_factor = bn.weight / running_std
        """
        assert self.bn.running_var is not None
        running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
        scale_factor = self.bn.weight / running_std
        weight_shape = [1] * len(self.weight.shape)
        weight_shape[0] = -1
        bias_shape = [1] * len(self.weight.shape)
        bias_shape[1] = -1
        scaled_weight = self.weight_fake_quant(self.weight * scale_factor.reshape(weight_shape))
        # using zero bias here since the bias for original conv
        # will be added later
        if self.bias is not None:
            zero_bias = torch.zeros_like(self.bias, dtype=input.dtype)
        else:
            zero_bias = torch.zeros(self.out_channels, device=scaled_weight.device, dtype=input.dtype)
        conv = self._conv_forward(input, scaled_weight, zero_bias)
        conv_orig = conv / scale_factor.reshape(bias_shape)
        if self.bias is not None:
            conv_orig = conv_orig + self.bias.reshape(bias_shape)
        conv = self.bn(conv_orig)
        return conv

    def _forward_slow(self, input):
        """
        A more accurate but slow method to compute conv bn fusion, following https://arxiv.org/pdf/1806.08342.pdf
        It requires two forward passes but handles the case bn.weight == 0

        Conv: Y = WX + B_c
        Conv without bias: Y0 = WX = Y - B_c, Y = Y0 + B_c

        Batch statistics:
          mean_Y = Y.mean()
                 = Y0.mean() + B_c
          var_Y = (Y - mean_Y)^2.mean()
                = (Y0 - Y0.mean())^2.mean()
        BN (r: bn.weight, beta: bn.bias):
          Z = r * (Y - mean_Y) / sqrt(var_Y + eps) + beta
            = r * (Y0 - Y0.mean()) / sqrt(var_Y + eps) + beta

        Fused Conv BN training (std_Y = sqrt(var_Y + eps)):
          Z = (r * W / std_Y) * X + r * (B_c - mean_Y) / std_Y + beta
            = (r * W / std_Y) * X - r * Y0.mean() / std_Y + beta

        Fused Conv BN inference (running_std = sqrt(running_var + eps)):
          Z = (r * W / running_std) * X - r * (running_mean - B_c) / running_std + beta

        QAT with fused conv bn:
          Z_train = fake_quant(r * W / running_std) * X * (running_std / std_Y) - r * Y0.mean() / std_Y + beta
                  = conv(X, fake_quant(r * W / running_std)) * (running_std / std_Y) - r * Y0.mean() / std_Y + beta
          Z_inference = conv(X, fake_quant(r * W / running_std)) - r * (running_mean - B_c) / running_std + beta
        """

        assert self.bn.running_var is not None
        assert self.bn.running_mean is not None

        # using zero bias here since the bias for original conv
        # will be added later
        zero_bias = torch.zeros(self.out_channels, device=self.weight.device, dtype=input.dtype)

        weight_shape = [1] * len(self.weight.shape)
        weight_shape[0] = -1
        bias_shape = [1] * len(self.weight.shape)
        bias_shape[1] = -1

        if self.bn.training:
            # needed to compute batch mean/std
            conv_out = self._conv_forward(input, self.weight, zero_bias)
            # update bn statistics
            with torch.no_grad():
                conv_out_bias = (
                    conv_out if self.bias is None else conv_out + self.bias.reshape(bias_shape)
                )
                self.bn(conv_out_bias)

        # fused conv + bn without bias using bn running statistics
        running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
        scale_factor = self.bn.weight / running_std
        scaled_weight = self.weight_fake_quant(
            self.weight * scale_factor.reshape(weight_shape)
        )
        # fused conv without bias for inference: (r * W / running_std) * X
        conv_bn = self._conv_forward(input, scaled_weight, zero_bias)

        if self.bn.training:
            avg_dims = [0] + list(range(2, len(self.weight.shape)))
            batch_mean = conv_out.mean(avg_dims)
            batch_var = torch.square(conv_out - batch_mean.reshape(bias_shape)).mean(
                avg_dims
            )
            batch_std = torch.sqrt(batch_var + self.bn.eps)

            # scale to use batch std in training mode
            # conv(X, r * W / std_Y) = conv(X, r * W / running_std) * (running_std / std_Y)
            unscale_factor = running_std / batch_std
            conv_bn *= unscale_factor.reshape(bias_shape)

            fused_mean = batch_mean
            fused_std = batch_std
        else:
            fused_mean = self.bn.running_mean - (self.bias if self.bias is not None else 0)
            fused_std = running_std

        # fused bias = beta - r * mean / std
        fused_bias = self.bn.bias - self.bn.weight * fused_mean / fused_std
        conv_bn += fused_bias.reshape(bias_shape)

        # HACK to let conv bias particpiate in loss to avoid DDP error (parameters
        #   were not used in producing loss)
        if self.bias is not None:
            conv_bn += (self.bias - self.bias).reshape(bias_shape)

        return conv_bn

    def extra_repr(self):
        # TODO(jerryzh): extend
        return super(_ConvBnNd, self).extra_repr()

    def forward(self, input):
        return self._forward(input)

    def train(self, mode=True):
        """
        Batchnorm's training behavior is using the self.training flag. Prevent
        changing it if BN is frozen. This makes sure that calling `model.train()`
        on a model with a frozen BN will behave properly.
        """
        self.training = mode
        if not self.freeze_bn:
            for module in self.children():
                module.train(mode)
        return self

    # ===== Serialization version history =====
    #
    # Version 1/None
    #   self
    #   |--- weight : Tensor
    #   |--- bias : Tensor
    #   |--- gamma : Tensor
    #   |--- beta : Tensor
    #   |--- running_mean : Tensor
    #   |--- running_var : Tensor
    #   |--- num_batches_tracked : Tensor
    #
    # Version 2
    #   self
    #   |--- weight : Tensor
    #   |--- bias : Tensor
    #   |--- bn : Module
    #        |--- weight : Tensor (moved from v1.self.gamma)
    #        |--- bias : Tensor (moved from v1.self.beta)
    #        |--- running_mean : Tensor (moved from v1.self.running_mean)
    #        |--- running_var : Tensor (moved from v1.self.running_var)
    #        |--- num_batches_tracked : Tensor (moved from v1.self.num_batches_tracked)
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        version = local_metadata.get('version', None)
        if version is None or version == 1:
            # BN related parameters and buffers were moved into the BN module for v2
            v2_to_v1_names = {
                'bn.weight': 'gamma',
                'bn.bias': 'beta',
                'bn.running_mean': 'running_mean',
                'bn.running_var': 'running_var',
                'bn.num_batches_tracked': 'num_batches_tracked',
            }
            for v2_name, v1_name in v2_to_v1_names.items():
                if prefix + v1_name in state_dict:
                    state_dict[prefix + v2_name] = state_dict[prefix + v1_name]
                    state_dict.pop(prefix + v1_name)
                elif prefix + v2_name in state_dict:
                    # there was a brief period where forward compatibility
                    # for this module was broken (between
                    # https://github.com/pytorch/pytorch/pull/38478
                    # and https://github.com/pytorch/pytorch/pull/38820)
                    # and modules emitted the v2 state_dict format while
                    # specifying that version == 1. This patches the forward
                    # compatibility issue by allowing the v2 style entries to
                    # be used.
                    pass
                elif strict:
                    missing_keys.append(prefix + v2_name)

        super(_ConvBnNd, self)._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

    @classmethod
    def from_float(cls, mod):
        r"""Create a qat module from a float module or qparams_dict

            Args: `mod` a float module, either produced by torch.ao.quantization utilities
            or directly from user
        """
        # The ignore is because _FLOAT_MODULE is a TypeVar here where the bound
        # has no __name__ (code is fine though)
        assert type(mod) == cls._FLOAT_MODULE, 'qat.' + cls.__name__ + '.from_float only works for ' + \
            cls._FLOAT_MODULE.__name__  # type: ignore[attr-defined]
        assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
        assert mod.qconfig, 'Input float module must have a valid qconfig'
        qconfig = mod.qconfig
        conv, bn = mod[0], mod[1]
        qat_convbn = cls(conv.in_channels, conv.out_channels, conv.kernel_size,
                         conv.stride, conv.padding, conv.dilation,
                         conv.groups, conv.bias is not None,
                         conv.padding_mode,
                         bn.eps, bn.momentum,
                         False,
                         qconfig)
        qat_convbn.weight = conv.weight
        qat_convbn.bias = conv.bias
        qat_convbn.bn.weight = bn.weight
        qat_convbn.bn.bias = bn.bias
        qat_convbn.bn.running_mean = bn.running_mean
        qat_convbn.bn.running_var = bn.running_var
        # mypy error: Cannot determine type of 'num_batches_tracked'
        qat_convbn.bn.num_batches_tracked = bn.num_batches_tracked  # type: ignore[has-type]
        return qat_convbn

    def to_float(self):
        cls = type(self)
        conv = cls._FLOAT_CONV_MODULE(  # type: ignore[attr-defined]
            self.in_channels,
            self.out_channels,
            self.kernel_size,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
            self.bias is not None,
            self.padding_mode)
        conv.weight = torch.nn.Parameter(self.weight.detach())
        if self.bias is not None:
            conv.bias = torch.nn.Parameter(self.bias.detach())

        if cls._FLOAT_BN_MODULE:  # type: ignore[attr-defined]
            # fuse bn into conv
            conv.weight, conv.bias = fuse_conv_bn_weights(
                conv.weight,
                conv.bias,
                self.bn.running_mean,
                self.bn.running_var,
                self.bn.eps,
                self.bn.weight,
                self.bn.bias
            )

        if cls._FLOAT_RELU_MODULE:  # type: ignore[attr-defined]
            modules = []
            modules.append(conv)
            relu = cls._FLOAT_RELU_MODULE()  # type: ignore[attr-defined]
            modules.append(relu)
            conv_relu = cls._FUSED_FLOAT_MODULE(*modules)  # type: ignore[attr-defined]
            conv_relu.train(self.training)
            return conv_relu
        else:
            conv.train(self.training)
            return conv

class ConvBn1d(_ConvBnNd, nn.Conv1d):
    r"""
    A ConvBn1d module is a module fused from Conv1d and BatchNorm1d,
    attached with FakeQuantize modules for weight,
    used in quantization aware training.

    We combined the interface of :class:`torch.nn.Conv1d` and
    :class:`torch.nn.BatchNorm1d`.

    Similar to :class:`torch.nn.Conv1d`, with FakeQuantize modules initialized
    to default.

    Attributes:
        freeze_bn:
        weight_fake_quant: fake quant module for weight

    """
    _FLOAT_BN_MODULE = nn.BatchNorm1d
    _FLOAT_RELU_MODULE = None
    _FLOAT_MODULE = nni.ConvBn1d
    _FLOAT_CONV_MODULE = nn.Conv1d

    def __init__(self,
                 # Conv1d args
                 in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=None,
                 padding_mode='zeros',
                 # BatchNorm1d args
                 # num_features: out_channels
                 eps=1e-05, momentum=0.1,
                 # affine: True
                 # track_running_stats: True
                 # Args for this module
                 freeze_bn=False,
                 qconfig=None):
        kernel_size = _single(kernel_size)
        stride = _single(stride)
        padding = _single(padding)
        dilation = _single(dilation)
        _ConvBnNd.__init__(self, in_channels, out_channels, kernel_size, stride,
                           padding, dilation, False, _single(0), groups, bias, padding_mode,
                           eps, momentum, freeze_bn, qconfig, dim=1)

class ConvBnReLU1d(ConvBn1d):
    r"""
    A ConvBnReLU1d module is a module fused from Conv1d, BatchNorm1d and ReLU,
    attached with FakeQuantize modules for weight,
    used in quantization aware training.

    We combined the interface of :class:`torch.nn.Conv1d` and
    :class:`torch.nn.BatchNorm1d` and :class:`torch.nn.ReLU`.

    Similar to `torch.nn.Conv1d`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight_fake_quant: fake quant module for weight

    """
    # base class defines _FLOAT_MODULE as "ConvBn1d"
    _FLOAT_MODULE = nni.ConvBnReLU1d  # type: ignore[assignment]
    _FLOAT_CONV_MODULE = nn.Conv1d
    _FLOAT_BN_MODULE = nn.BatchNorm1d
    _FLOAT_RELU_MODULE = nn.ReLU  # type: ignore[assignment]
    # module class after fusing bn into conv
    _FUSED_FLOAT_MODULE = nni.ConvReLU1d

    def __init__(self,
                 # Conv1d args
                 in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=None,
                 padding_mode='zeros',
                 # BatchNorm1d args
                 # num_features: out_channels
                 eps=1e-05, momentum=0.1,
                 # affine: True
                 # track_running_stats: True
                 # Args for this module
                 freeze_bn=False,
                 qconfig=None):
        super().__init__(in_channels, out_channels, kernel_size, stride,
                         padding, dilation, groups, bias,
                         padding_mode, eps, momentum,
                         freeze_bn,
                         qconfig)

    def forward(self, input):
        return F.relu(ConvBn1d._forward(self, input))

    @classmethod
    def from_float(cls, mod):
        return super(ConvBnReLU1d, cls).from_float(mod)

class ConvReLU1d(nnqat.Conv1d, nni._FusedModule):
    r"""A ConvReLU1d module is a fused module of Conv1d and ReLU, attached with
    FakeQuantize modules for weight for
    quantization aware training.

    We combined the interface of :class:`~torch.nn.Conv1d` and
    :class:`~torch.nn.BatchNorm1d`.

    Attributes:
        weight_fake_quant: fake quant module for weight

    """
    _FLOAT_MODULE = nni.ConvReLU1d
    _FLOAT_CONV_MODULE = nn.Conv1d
    _FLOAT_BN_MODULE = None
    _FLOAT_RELU_MODULE = nn.ReLU

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=True, padding_mode='zeros',
                 qconfig=None):
        super(ConvReLU1d, self).__init__(in_channels, out_channels, kernel_size,
                                         stride=stride, padding=padding, dilation=dilation,
                                         groups=groups, bias=bias, padding_mode=padding_mode,
                                         qconfig=qconfig)
        assert qconfig, 'qconfig must be provided for QAT module'
        self.qconfig = qconfig
        self.weight_fake_quant = self.qconfig.weight()

    def forward(self, input):
        return F.relu(
            self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias))

    @classmethod
    def from_float(cls, mod):
        return super(ConvReLU1d, cls).from_float(mod)

class ConvBn2d(_ConvBnNd, nn.Conv2d):
    r"""
    A ConvBn2d module is a module fused from Conv2d and BatchNorm2d,
    attached with FakeQuantize modules for weight,
    used in quantization aware training.

    We combined the interface of :class:`torch.nn.Conv2d` and
    :class:`torch.nn.BatchNorm2d`.

    Similar to :class:`torch.nn.Conv2d`, with FakeQuantize modules initialized
    to default.

    Attributes:
        freeze_bn:
        weight_fake_quant: fake quant module for weight

    """
    _FLOAT_MODULE = nni.ConvBn2d
    _FLOAT_CONV_MODULE = nn.Conv2d
    _FLOAT_BN_MODULE = nn.BatchNorm2d
    _FLOAT_RELU_MODULE = None

    def __init__(self,
                 # ConvNd args
                 in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=None,
                 padding_mode='zeros',
                 # BatchNorm2d args
                 # num_features: out_channels
                 eps=1e-05, momentum=0.1,
                 # affine: True
                 # track_running_stats: True
                 # Args for this module
                 freeze_bn=False,
                 qconfig=None):
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)
        _ConvBnNd.__init__(self, in_channels, out_channels, kernel_size, stride,
                           padding, dilation, False, _pair(0), groups, bias, padding_mode,
                           eps, momentum, freeze_bn, qconfig, dim=2)

class ConvBnReLU2d(ConvBn2d):
    r"""
    A ConvBnReLU2d module is a module fused from Conv2d, BatchNorm2d and ReLU,
    attached with FakeQuantize modules for weight,
    used in quantization aware training.

    We combined the interface of :class:`torch.nn.Conv2d` and
    :class:`torch.nn.BatchNorm2d` and :class:`torch.nn.ReLU`.

    Similar to `torch.nn.Conv2d`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight_fake_quant: fake quant module for weight

    """
    # base class defines _FLOAT_MODULE as "ConvBn2d"
    _FLOAT_MODULE = nni.ConvBnReLU2d  # type: ignore[assignment]
    _FLOAT_CONV_MODULE = nn.Conv2d
    _FLOAT_BN_MODULE = nn.BatchNorm2d
    _FLOAT_RELU_MODULE = nn.ReLU  # type: ignore[assignment]
    # module class after fusing bn into conv
    _FUSED_FLOAT_MODULE = nni.ConvReLU2d

    def __init__(self,
                 # Conv2d args
                 in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=None,
                 padding_mode='zeros',
                 # BatchNorm2d args
                 # num_features: out_channels
                 eps=1e-05, momentum=0.1,
                 # affine: True
                 # track_running_stats: True
                 # Args for this module
                 freeze_bn=False,
                 qconfig=None):
        super(ConvBnReLU2d, self).__init__(in_channels, out_channels, kernel_size, stride,
                                           padding, dilation, groups, bias,
                                           padding_mode, eps, momentum,
                                           freeze_bn,
                                           qconfig)

    def forward(self, input):
        return F.relu(ConvBn2d._forward(self, input))

    @classmethod
    def from_float(cls, mod):
        return super(ConvBnReLU2d, cls).from_float(mod)

class ConvReLU2d(nnqat.Conv2d, nni._FusedModule):
    r"""A ConvReLU2d module is a fused module of Conv2d and ReLU, attached with
    FakeQuantize modules for weight for
    quantization aware training.

    We combined the interface of :class:`~torch.nn.Conv2d` and
    :class:`~torch.nn.BatchNorm2d`.

    Attributes:
        weight_fake_quant: fake quant module for weight

    """
    _FLOAT_MODULE = nni.ConvReLU2d
    _FLOAT_CONV_MODULE = nn.Conv2d
    _FLOAT_BN_MODULE = None
    _FLOAT_RELU_MODULE = nn.ReLU

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=True, padding_mode='zeros',
                 qconfig=None):
        super(ConvReLU2d, self).__init__(in_channels, out_channels, kernel_size,
                                         stride=stride, padding=padding, dilation=dilation,
                                         groups=groups, bias=bias, padding_mode=padding_mode,
                                         qconfig=qconfig)
        assert qconfig, 'qconfig must be provided for QAT module'
        self.qconfig = qconfig
        self.weight_fake_quant = self.qconfig.weight()

    def forward(self, input):
        return F.relu(
            self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias))

    @classmethod
    def from_float(cls, mod):
        return super(ConvReLU2d, cls).from_float(mod)

class ConvBn3d(_ConvBnNd, nn.Conv3d):
    r"""
    A ConvBn3d module is a module fused from Conv3d and BatchNorm3d,
    attached with FakeQuantize modules for weight,
    used in quantization aware training.

    We combined the interface of :class:`torch.nn.Conv3d` and
    :class:`torch.nn.BatchNorm3d`.

    Similar to :class:`torch.nn.Conv3d`, with FakeQuantize modules initialized
    to default.

    Attributes:
        freeze_bn:
        weight_fake_quant: fake quant module for weight

    """
    _FLOAT_MODULE = nni.ConvBn3d
    _FLOAT_CONV_MODULE = nn.Conv3d
    _FLOAT_BN_MODULE = nn.BatchNorm3d
    _FLOAT_RELU_MODULE = None

    def __init__(
        self,
        # ConvNd args
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=None,
        padding_mode="zeros",
        # BatchNorm3d args
        # num_features: out_channels
        eps=1e-05,
        momentum=0.1,
        # affine: True
        # track_running_stats: True
        # Args for this module
        freeze_bn=False,
        qconfig=None,
    ):
        kernel_size = _triple(kernel_size)
        stride = _triple(stride)
        padding = _triple(padding)
        dilation = _triple(dilation)
        _ConvBnNd.__init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            dilation,
            False,
            _triple(0),
            groups,
            bias,
            padding_mode,
            eps,
            momentum,
            freeze_bn,
            qconfig,
            dim=3,
        )

class ConvBnReLU3d(ConvBn3d):
    r"""
    A ConvBnReLU3d module is a module fused from Conv3d, BatchNorm3d and ReLU,
    attached with FakeQuantize modules for weight,
    used in quantization aware training.

    We combined the interface of :class:`torch.nn.Conv3d` and
    :class:`torch.nn.BatchNorm3d` and :class:`torch.nn.ReLU`.

    Similar to `torch.nn.Conv3d`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight_fake_quant: fake quant module for weight

    """
    _FLOAT_MODULE = nni.ConvBnReLU3d  # type: ignore[assignment]
    _FLOAT_CONV_MODULE = nn.Conv3d
    _FLOAT_BN_MODULE = nn.BatchNorm3d
    _FLOAT_RELU_MODULE = nn.ReLU  # type: ignore[assignment]
    # module class after fusing bn into conv
    _FUSED_FLOAT_MODULE = nni.ConvReLU3d

    def __init__(
        self,
        # Conv3d args
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=None,
        padding_mode="zeros",
        # BatchNorm3d args
        # num_features: out_channels
        eps=1e-05,
        momentum=0.1,
        # affine: True
        # track_running_stats: True
        # Args for this module
        freeze_bn=False,
        qconfig=None,
    ):
        super(ConvBnReLU3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            dilation,
            groups,
            bias,
            padding_mode,
            eps,
            momentum,
            freeze_bn,
            qconfig,
        )

    def forward(self, input):
        return F.relu(ConvBn3d._forward(self, input))

    @classmethod
    def from_float(cls, mod):
        return super(ConvBnReLU3d, cls).from_float(mod)

class ConvReLU3d(nnqat.Conv3d, nni._FusedModule):
    r"""A ConvReLU3d module is a fused module of Conv3d and ReLU, attached with
    FakeQuantize modules for weight for
    quantization aware training.

    We combined the interface of :class:`~torch.nn.Conv3d` and
    :class:`~torch.nn.BatchNorm3d`.

    Attributes:
        weight_fake_quant: fake quant module for weight

    """
    _FLOAT_MODULE = nni.ConvReLU3d
    _FLOAT_CONV_MODULE = nn.Conv3d
    _FLOAT_BN_MODULE = None
    _FLOAT_RELU_MODULE = nn.ReLU

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=True,
        padding_mode="zeros",
        qconfig=None,
    ):
        super(ConvReLU3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
            padding_mode=padding_mode,
            qconfig=qconfig,
        )
        assert qconfig, "qconfig must be provided for QAT module"
        self.qconfig = qconfig
        self.weight_fake_quant = self.qconfig.weight()

    def forward(self, input):
        return F.relu(
            self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias)
        )

    @classmethod
    def from_float(cls, mod):
        return super(ConvReLU3d, cls).from_float(mod)

def update_bn_stats(mod):
    if type(mod) in set(
        [ConvBnReLU1d, ConvBnReLU2d, ConvBnReLU3d, ConvBn1d, ConvBn2d, ConvBn3d]
    ):
        mod.update_bn_stats()

def freeze_bn_stats(mod):
    if type(mod) in set(
        [ConvBnReLU1d, ConvBnReLU2d, ConvBnReLU3d, ConvBn1d, ConvBn2d, ConvBn3d]
    ):
        mod.freeze_bn_stats()