File: linear_relu.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (48 lines) | stat: -rw-r--r-- 1,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.ao.nn.qat as nnqat
import torch.ao.nn.intrinsic as nni
import torch.nn.functional as F

class LinearReLU(nnqat.Linear, nni._FusedModule):
    r"""
    A LinearReLU module fused from Linear and ReLU modules, attached with
    FakeQuantize modules for weight, used in
    quantization aware training.

    We adopt the same interface as :class:`torch.nn.Linear`.

    Similar to `torch.nn.intrinsic.LinearReLU`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight: fake quant module for weight

    Examples::

        >>> # xdoctest: +SKIP
        >>> m = nn.qat.LinearReLU(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    _FLOAT_MODULE = nni.LinearReLU

    def __init__(self, in_features, out_features, bias=True,
                 qconfig=None):
        super(LinearReLU, self).__init__(in_features, out_features, bias, qconfig)

    def forward(self, input):
        return F.relu(F.linear(input, self.weight_fake_quant(self.weight), self.bias))

    @classmethod
    def from_float(cls, mod):
        return super(LinearReLU, cls).from_float(mod)

    def to_float(self):
        linear = torch.nn.Linear(self.in_features, self.out_features, self.bias is not None)
        linear.weight = torch.nn.Parameter(self.weight.detach())
        if self.bias is not None:
            linear.bias = torch.nn.Parameter(self.bias.detach())
        relu = torch.nn.ReLU()
        return torch.nn.intrinsic.LinearReLU(linear, relu)